ﻻ يوجد ملخص باللغة العربية
Weyl points are the degenerate points in three-dimensional momentum space with nontrivial topological phase, which are usually realized in classical system with structure and symmetry designs. Here we proposed a one-dimensional layer-stacked photonic crystal using anisotropic materials to realize ideal type-II Weyl points without structure designs. The topological transition from two Dirac points to four Weyl points can be clearly observed by tuning the twist angle between layers. Besides, on the interface between the photonic type-II Weyl material and air, gappless surface states have also been demonstrated in an incomplete bulk bandgap. By breaking parameter symmetry, these ideal type-II Weyl points at the same frequency would transform into the non-ideal ones, and exhibit topological surface states with single group velocity. Our work may provide a new idea for the realization of photonic Weyl points or other semimetal phases by utilizing naturally anisotropic materials.
Real photon pairs can be created in a dynamic cavity with periodically modulated refractive index of the constituent media or oscillating boundaries. This effect is called Dynamic Casimir effect (DCE), which represents one of the most amazing predict
Three-dimensional (3D) artificial metacrystals host rich topological phases, such as Weyl points, nodal rings and 3D photonic topological insulators. These topological states enable a wide range of applications, including 3D robust waveguide, one-way
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structu
We study the effects of single impurities on the transmission in microwave realizations of the photonic Kronig-Penney model, consisting of arrays of Teflon pieces alternating with air spacings in a microwave guide. As only the first propagating mode
Weyl points are point degeneracies that occur in momentum space of periodic materials, and are associated with a quantized topological charge. We experimentally observe in a 3D micro-printed photonic crystal that a charge-2 Weyl point can be split in