ﻻ يوجد ملخص باللغة العربية
We investigate the performance of the recently proposed stationary Fokker-Planck sampling method considering a combinatorial optimization problem from statistical physics. The algorithmic procedure relies upon the numerical solution of a linear second order differential equation that depends on a diffusion-like parameter D. We apply it to the problem of finding ground states of 2d Ising spin glasses for the +-J-Model. We consider square lattices with side length up to L=24 with two different types of boundary conditions and compare the results to those obtained by exact methods. A particular value of D is found that yields an optimal performance of the algorithm. We compare this optimal value of D to a percolation transition, which occurs when studying the connected clusters of spins flipped by the algorithm. Nevertheless, even for moderate lattice sizes, the algorithm has more and more problems to find the exact ground states. This means that the approach, at least in its standard form, seems to be inferior to other approaches like parallel tempering.
We present a detailed proof of a previously announced result (C.M. Newman and D.L. Stein, Phys. Rev. Lett. v. 84, pp. 3966--3969 (2000)) supporting the absence of multiple (incongruent) ground state pairs for 2D Edwards-Anderson spin glasses (with ze
We use a non-equilibrium simulation method to study the spin glass transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity $v$ (temperature change versus time) in Monte Carlo simulations st
We discuss the underlying connections among the thermodynamic properties of short-ranged spin glasses, their behavior in large finite volumes, and the interfaces that separate different pure states, and also ground states and low-lying excitations.
We study zero-temperature, stochastic Ising models sigma(t) on a d-dimensional cubic lattice with (disordered) nearest-neighbor couplings independently chosen from a distribution mu on R and an initial spin configuration chosen uniformly at random. G
We consider the two-dimensional randomly site diluted Ising model and the random-bond +-J Ising model (also called Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of therm