ﻻ يوجد ملخص باللغة العربية
In this work, we introduce a definition of the Discrete Fourier Transform (DFT) on Euclidean lattices in $R^n$, that generalizes the $n$-th fold DFT of the integer lattice $Z^n$ to arbitrary lattices. This definition is not applicable for every lattice, but can be defined on lattices known as Systematic Normal Form (SysNF) introduced in cite{ES16}. Systematic Normal Form lattices are sets of integer vectors that satisfy a single homogeneous modular equation, which itself satisfies a certain number-theoretic property. Such lattices form a dense set in the space of $n$-dimensional lattices, and can be used to approximate efficiently any lattice. This implies that for every lattice $L$ a DFT can be computed efficiently on a lattice near $L$. Our proof of the statement above uses arguments from quantum computing, and as an application of our definition we show a quantum algorithm for sampling from discrete distributions on lattices, that extends our ability to sample efficiently from the discrete Gaussian distribution cite{GPV08} to any distribution that is sufficiently smooth. We conjecture that studying the eigenvectors of the newly-defined lattice DFT may provide new insights into the structure of lattices, especially regarding hard computational problems, like the shortest vector problem.
In this Letter, we present a physical scheme for implementing the discrete quantum Fourier transform in a coupled semiconductor double quantum dot system. The main controlled-R gate operation can be decomposed into many simple and feasible unitary tr
We present a super-high-efficiency approximate computing scheme for series sum and discrete Fourier transform. The summation of a series sum or a discrete Fourier transform is approximated by summing over part of the terms multiplied by corresponding
Quantum Fourier transforms (QFT) have gained increased attention with the rise of quantum walks, boson sampling, and quantum metrology. Here we present and demonstrate a general technique that simplifies the construction of QFT interferometers using
We explore finite-field frameworks for quantum theory and quantum computation. The simplest theory, defined over unrestricted finite fields, is unnaturally strong. A second framework employs only finite fields with no solution to x^2+1=0, and thus pe
In this paper we review the basic results concerning the Wigner transform and then we completely solve the quantum forced harmonic/inverted oscillator in such a framework; eventually, the tunnel effect for the forced inverted oscillator is discussed.