ترغب بنشر مسار تعليمي؟ اضغط هنا

Opinion dynamics: models, extensions and external effects

202   0   0.0 ( 0 )
 نشر من قبل Alina S\\^irbu
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]



قيم البحث

اقرأ أيضاً

Opinion dynamics concerns social processes through which populations or groups of individuals agree or disagree on specific issues. As such, modelling opinion dynamics represents an important research area that has been progressively acquiring releva nce in many different domains. Existing approaches have mostly represented opinions through discrete binary or continuous variables by exploring a whole panoply of cases: e.g. independence, noise, external effects, multiple issues. In most of these cases the crucial ingredient is an attractive dynamics through which similar or similar enough agents get closer. Only rarely the possibility of explicit disagreement has been taken into account (i.e., the possibility for a repulsive interaction among individuals opinions), and mostly for discrete or 1-dimensional opinions, through the introduction of additional model parameters. Here we introduce a new model of opinion formation, which focuses on the interplay between the possibility of explicit disagreement, modulated in a self-consistent way by the existing opinions overlaps between the interacting individuals, and the effect of external information on the system. Opinions are modelled as a vector of continuous variables related to multiple possible choices for an issue. Information can be modulated to account for promoting multiple possible choices. Numerical results show that extreme information results in segregation and has a limited effect on the population, while milder messages have better success and a cohesion effect. Additionally, the initial condition plays an important role, with the population forming one or multiple clusters based on the initial average similarity between individuals, with a transition point depending on the number of opinion choices.
Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange between individuals can also have an effect on how willing they are to express their opinion publicly. Here, we introduce a model of public opinion expression. Two groups of agents with different opinion on an issue interact with each other, changing the willingness to express their opinion according to whether they perceive themselves as part of the majority or minority opinion. We formulate the model as a multi-group majority game and investigate the Nash equilibria. We also provide a dynamical systems perspective: Using the reinforcement learning algorithm of $Q$-learning, we reduce the $N$-agent system in a mean-field approach to two dimensions which represent the two opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis of its parameters. The model identifies social-structural conditions for public opinion predominance of different groups. Among other findings, we show under which circumstances a minority can dominate public discourse.
Opinion formation is an important element of social dynamics. It has been widely studied in the last years with tools from physics, mathematics and computer science. Here, a continuous model of opinion dynamics for multiple possible choices is analys ed. Its main features are the inclusion of disagreement and possibility of modulating information, both from one and multiple sources. The interest is in identifying the effect of the initial cohesion of the population, the interplay between cohesion and information extremism, and the effect of using multiple sources of information that can influence the system. Final consensus, especially with external information, depends highly on these factors, as numerical simulations show. When no information is present, consensus or segregation is determined by the initial cohesion of the population. Interestingly, when only one source of information is present, consensus can be obtained, in general, only when this is extremely mild, i.e. there is not a single opinion strongly promoted, or in the special case of a large initial cohesion and low information exposure. On the contrary, when multiple information sources are allowed, consensus can emerge with an information source even when this is not extremely mild, i.e. it carries a strong message, for a large range of initial conditions.
In this work, we investigate a heterogeneous population in the modified Hegselmann-Krause opinion model on complex networks. We introduce the Shannon information entropy about all relative opinion clusters to characterize the cluster profile in the f inal configuration. Independent of network structures, there exists the optimal stubbornness of one subpopulation for the largest number of clusters and the highest entropy. Besides, there is the optimal bounded confidence (or subpopulation ratio) of one subpopulation for the smallest number of clusters and the lowest entropy. However, network structures affect cluster profiles indeed. A large average degree favors consensus for making different networks more similar with complete graphs. The network size has limited impact on cluster profiles of heterogeneous populations on scale-free networks but has significant effects upon those on small-world networks.
259 - F. W. S. Lima 2012
Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on Stauffer-Hohnisch-Pittnauer (SHP) networks. To control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhood of the critical noise $q_{c}$ to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied besides using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies giving the same behavior regardless of dynamic or topology used here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا