ﻻ يوجد ملخص باللغة العربية
We demonstrate that porous fibers have low effective material loss over an extended frequency range, 4.5 times larger bandwidth than that can be achieved in sub-wavelength solid core fibers. We also show that these new fibers can be designed to have near zero dispersion for 0.5-1 THz resulting to overall less terahertz signal degradation. In addition, it is demonstrated that the use of asymmetrical sub-wavelength air-holes within the core leads to high birefringence ~0.026. This opens up the potential for realization of novel polarization preserving fibers in the terahertz regime.
The recent development of the terahertz waveguide makes it an excellent platform for integrating many intriguing functionalities, which offers tremendous potential to build compact and robust terahertz systems. In the context of next-generation high-
We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteri
Previous studies of the modulation instability (MI) of continuous waves (CWs) in a two-core fiber (TCF) did not consider effects caused by co-propagation of the two polarized modes in a TCF that possesses birefringence, such as cross-phase modulation
Ability to selectively enhance the amplitude and maintain high coherence of the supercontinuum signal with long pulses is gaining significance. In this work an extra degree of freedom afforded by varying the dispersion profile of a waveguide is utili
Materials with a zero refractive index support electromagnetic modes that exhibit stationary phase profiles. While such materials have been realized across the visible and near-infrared spectral range, radiative and dissipative optical losses have hi