ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved and continuous-wave optical spin pumping of semiconductor quantum wells

259   0   0.0 ( 0 )
 نشر من قبل M. M. Glazov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental and theoretical studies of all-optical spin pump and probe of resident electrons in CdTe/(Cd,Mg)Te semiconductor quantum wells are reported. A two-color Hanle-MOKE technique (based on continuous-wave excitation) and time-resolved Kerr rotation in the regime of resonant spin amplification (based on pulsed excitation) provide a complementary measure of electron spin relaxation time. Influence of electron localization on long-lived spin coherence is examined by means of spectral and temperature dependencies. Various scenarios of spin polarization generation (via the trion and exciton states) are analyzed and difference between continuous-wave and pulsed excitations is considered. Effects related to inhomogeneous distribution of $g$-factor and anisotropic spin relaxation time on measured quantities are discussed.



قيم البحث

اقرأ أيضاً

462 - M. Munsch 2009
The light emission rate of a single quantum dot can be drastically enhanced by embedding it in a resonant semiconductor microcavity. This phenomenon is known as the Purcell effect, and the coupling strength between emitter and cavity can be quantifie d by the Purcell factor. The most natural way for probing the Purcell effect is a time-resolved measurement. However, this approach is not always the most convenient one, and alternative approaches based on a continuous-wave measurement are often more appropriate. Various signatures of the Purcell effect can indeed be observed using continuous-wave measurements (increase of the pump rate needed to saturate the quantum dot emission, enhancement of its emission rate at saturation, change of its radiation pattern), signatures which are encountered when a quantum dot is put on-resonance with the cavity mode. All these observations potentially allow one to estimate the Purcell factor. In this paper, we carry out these different types of measurements for a single quantum dot in a pillar microcavity and we compare their reliability. We include in the data analysis the presence of independent, non-resonant emitters in the microcavity environment, which are responsible for a part of the observed fluorescence.
We theoretically study spin pumping from a layered van der Waals antiferromagnet in its canted ground state into an adjacent normal metal. We find that the resulting dc spin pumping current bears contributions along all spin directions. Our analysis allows for detecting intra- and cross-sublattice spin-mixing conductances via measuring the two in-plane spin current components. We further show that sublattice symmetry-breaking Gilbert damping can be realized via interface engineering and induces a dissipative coupling between the optical and acoustic magnon modes. This realizes magnon level attraction and exceptional points in the system. Furthermore, the dissipative coupling and cross-sublattice spin pumping contrive to produce an unconventional spin current in the out-of-plane direction. Our findings provide a route to extract the spin mixing conductance matrix and uncovers the unique opportunities, such as level attraction, offered by van der Waals antiferromagnet-normal metal hybrids.
The increasing demand for ultrahigh data storage densities requires development of 3D magnetic nanostructures. In this regard, focused electron beam induced deposition (FEBID) is a technique of choice for direct-writing of various complex nano-archit ectures. However, intrinsic properties of nanomagnets are often poorly known and can hardly be assessed by local optical probe techniques. Here, we demonstrate spatially resolved spin-wave spectroscopy of individual circular magnetic elements with radii down to 100 nm. The key component of the setup is a microwave antenna whose microsized central part is placed over a movable substrate with well-separated CoFe-FEBID nanodisks. The circular symmetry of the disks gives rise to standing spin-wave resonances and allows for the deduction of the saturation magnetization and the exchange stiffness of the material using an analytical theory. The presented approach is especially valuable for the characterization of direct-write elements opening new horizons for 3D nanomagnetism and magnonics.
146 - D. A. Fuhrmann 2009
Temperature dependence and recombination behavior of trapped charge carriers in ZnCdSe/ZnSe multiple quantum wells are investigated employing surface acoustic waves. These weakly perturb the carrier system, but remain highly sensitive even at small c onductivities. Using this non-invasive probe we are able to detect persistent photoconductivity minutes after optical excitation. Measurement of exciting photon energies, the temperature dependence and ability to quench the conductivity with energies lower than the bandgap, support the notion of spatial separation of electrons and holes in the wells, due to random local potential fluctuations possibly induced by compositional fluctuations.
We report on the clear evidence of massless Dirac fermions in two-dimensional system based on III-V semiconductors. Using a gated Hall bar made on a three-layer InAs/GaSb/InAs quantum well, we restore the Landau levels fan chart by magnetotransport a nd unequivocally demonstrate a gapless state in our sample. Measurements of cyclotron resonance at different electron concentrations directly indicate a linear band crossing at the $Gamma$ point of Brillouin zone. Analysis of experimental data within analytical Dirac-like Hamiltonian allows us not only determing velocity $v_F=1.8cdot10^5$ m/s of massless Dirac fermions but also demonstrating significant non-linear dispersion at high energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا