ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-sublattice Spin Pumping and Magnon Level Attraction in van der Waals Antiferromagnets

161   0   0.0 ( 0 )
 نشر من قبل Roberto Troncoso
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study spin pumping from a layered van der Waals antiferromagnet in its canted ground state into an adjacent normal metal. We find that the resulting dc spin pumping current bears contributions along all spin directions. Our analysis allows for detecting intra- and cross-sublattice spin-mixing conductances via measuring the two in-plane spin current components. We further show that sublattice symmetry-breaking Gilbert damping can be realized via interface engineering and induces a dissipative coupling between the optical and acoustic magnon modes. This realizes magnon level attraction and exceptional points in the system. Furthermore, the dissipative coupling and cross-sublattice spin pumping contrive to produce an unconventional spin current in the out-of-plane direction. Our findings provide a route to extract the spin mixing conductance matrix and uncovers the unique opportunities, such as level attraction, offered by van der Waals antiferromagnet-normal metal hybrids.

قيم البحث

اقرأ أيضاً

201 - Hantao Zhang , Ran Cheng 2021
Magnon spin Nernst effect was recently proposed as an intrinsic effect in antiferromagnets, where spin diffusion and boundary spin transmission have been ignored. However, diffusion processes are essential to convert a bulk spin current into boundary spin accumulation, which determines the spin injection rate into detectors through imperfect transmission. We formulate a diffusive theory of the magnon spin Nernst effect with boundary conditions reflecting real device geometry. Thanks to the diffusion effect, the output signals in both electronic and optical detection grow rapidly with an increasing system size in the transverse dimension, which eventually saturate. Counterintuitively, the measurable signals are even functions of magnetic field, yielding optical detection more reliable than electronic detection.
Spin and photonic systems are at the heart of modern information devices and emerging quantum technologies. An interplay between electron-hole pairs (excitons) in semiconductors and collective spin excitations (magnons) in magnetic crystals would bri dge these heterogeneous systems, leveraging their individual assets in novel interconnected devices. Here, we report the magnon-exciton coupling at the interface between a magnetic thin film and an atomically-thin semiconductor. Our approach allies the long-lived magnons hosted in a film of yttrium iron garnet (YIG) to strongly-bound excitons in a flake of a transition metal dichalcogenide, MoSe$_2$. The magnons induce on the excitons a dynamical valley Zeeman effect ruled by interfacial exchange interactions. This nascent class of hybrid system suggests new opportunities for information transduction between microwave and optical regions.
Van der Waals heterostructures, which explore the synergetic properties of two-dimensional (2D) materials when assembled into three-dimensional stacks, have already brought to life a number of exciting new phenomena and novel electronic devices. Stil l, the interaction between the layers in such assembly, possible surface reconstruction, intrinsic and extrinsic defects are very difficult to characterise by any method, because of the single-atomic nature of the crystals involved. Here we present a convergent beam electron holographic technique which allows imaging of the stacking order in such heterostructures. Based on the interference of electron waves scattered on different crystals in the stack, this approach allows one to reconstruct the relative rotation, stretching, out-of-plane corrugation of the layers with atomic precision. Being holographic in nature, our approach allows extraction of quantitative information about the three-dimensional structure of the typical defects from a single image covering thousands of square nanometres. Furthermore, qualitative information about the defects in the stack can be extracted from the convergent diffraction patterns even without reconstruction - simply by comparing the patterns in different diffraction spots. We expect that convergent beam electron holography will be widely used to study the properties of van der Waals heterostructures.
141 - Wenyu Xing , Luyi Qiu , Xirui Wang 2019
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a re sult of magnetic anisotropy. Furthermore, giant tunneling magnetoresistance and electrical control of magnetism have been reported. However, the potential of 2D van der Waals magnets for magnonics, magnon-based spintronics, has not been explored yet. Here, we report the experimental observation of long-distance magnon transport in quasi-twodimensional van der Waals antiferromagnet MnPS3, which demonstrates the 2D magnets as promising material candidates for magnonics. As the 2D MnPS3 thickness decreases, a shorter magnon diffusion length is observed, which could be attributed to the surface-impurity-induced magnon scattering. Our results could pave the way for exploring quantum magnonics phenomena and designing future magnonics devices based on 2D van der Waals magnets.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا