ترغب بنشر مسار تعليمي؟ اضغط هنا

The s-wave charmed baryon resonances from a coupled-channel approach with heavy quark symmetry

428   0   0.0 ( 0 )
 نشر من قبل Volodymyr Magas
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study charmed baryon resonances which are generated dynamically within a unitary meson-baryon coupled channel model that treats the heavy pseudoscalar and vector mesons on equal footing as required by heavy-quark symmetry. It is an extension of recent SU(4) models with t-channel vector meson exchanges to a SU(8) spin-flavor scheme, but differs considerably from the SU(4) approach in how the strong breaking of the flavor symmetry is implemented. Some of our dynamically generated states can be readily assigned to recently observed baryon resonances, while others do not have a straightforward identification and require the compilation of more data as well as an extension of the model to d-wave meson-baryon interactions and p-wave coupling in the neglected s- and u-channel diagrams. Of several novelties, we find that the Lambda_c(2595), which emerged as a ND quasi-bound state within the SU(4) approaches, becomes predominantly a ND* quasi-bound state in the present SU(8) scheme.



قيم البحث

اقرأ أيضاً

We study charmed baryon resonances that are generated dynamically from a coupled-channel unitary approach that implements heavy-quark symmetry. Some states can already be identified with experimental observations, such as $Lambda_c(2595)$, $Lambda_c( 2660)$, $Sigma_c(2902)$ or $Lambda_c(2941)$, while others need a compilation of more experimental data as well as an extension of the model to include higher order contributions. We also compare our model to previous SU(4) schemes.
The chiral symmetry of QCD requires energy-dependent pionic strong interactions at low energies. This constraint, however, is not fulfilled by the usual Breit--Wigner parameterization of pionic resonances, leading to masses larger than the real ones. We derive relations between nonleptonic three-body decays of the $B$-meson into a $D$-meson and a pair of light pseudoscalar mesons based on SU(3) chiral symmetry. Employing effective field theory methods, we demonstrate that taking into account the final-state interactions, the experimental data of the decays $B^-to D^+pi^-pi^-$, $B_s^0to bar{D}^0K^-pi^+$, $B^0tobar{D}^0pi^-pi^+$, $B^-to D^+pi^-K^-$ and $B^0tobar{D}^0pi^-K^+$ can all be described by the nonperturbative $pi/eta/K$-$D/D_s$ scattering amplitudes previously obtained from a combination of chiral effective field theory and lattice QCD calculations. The results provide a strong support of the scenario that the broad scalar charmed meson $D^ast_0(2400)$ should be replaced by two states, the lower one of which has a mass of around 2.1 GeV, much smaller than that extracted from experimental data using a Breit--Wigner parameterization.
We investigate baryon-baryon interactions with strangeness $S=-2$ and isospin I=0 system from Lattice QCD. In order to solve this system, we prepare three types of baryon-baryon operators ($LambdaLambda$, $NXi$ and $SigmaSigma$) for the sink and cons truct three source operators diagonalizing the $3times3$ correlation matrix. Combining of the prepared sink operators with the diagonalized source operators, we obtain nine effective Nambu-Bethe-Salpeter (NBS) wave functions. The $3times3$ potential matrix is calculated by solving the coupled-channel Schrodinger equation. The flavor SU(3) breaking effects of the potential matrix are also discussed by comparing with the results of the SU(3) limit calculation. Our numerical results are obtained from three sets of 2+1 flavor QCD gauge configurations provided by the CP-PACS/JLQCD Collaborations.
Charmed dibaryon states with the spin-parity $J^{pi}=0^+$, $1^+$, and $2^+$are predicted for the two-body $Y_cN$ ($=Lambda_c$, $Sigma_c$, or $Sigma^*_c$) systems. We employ the complex scaling method for the coupled channel Hamiltonian with the $Y_cN $-CTNN potentials, which were proposed in our previous study. We find four sharp resonance states near the $Sigma_c N$ and $Sigma^*_c N$ thresholds. From the analysis of the binding energies of partial channel systems, we conclude that these resonance states are Feshbach resonances. We compare the results with the $Y_c N$ resonance states in the heavy quark limit, where the $Sigma_c N$ and $Sigma^*_c N$ thresholds are degenerate, and find that they form two pairs of the heavy-quark doublets in agreement with the heavy quark spin symmetry.
The baryon-baryon interactions with strangeness S = -2 with the flavor SU(3) breaking are calculated for the first time by using the HAL QCD method extended to coupled channel system in lattice QCD. The potential matrices are extracted from the Nambu -Bethe-Salpeter wave functions obtained by the 2+1 flavor gauge configurations of CP-PACS/JLQCD Collaborations with a physical volume of 1.93 fm cubed and with m_pi/m_K = 0.96, 0.90, 0.86. The spatial structure and the quark mass dependence of the potential matrix in the baryon basis and in the SU(3) basis are investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا