ﻻ يوجد ملخص باللغة العربية
The baryon-baryon interactions with strangeness S = -2 with the flavor SU(3) breaking are calculated for the first time by using the HAL QCD method extended to coupled channel system in lattice QCD. The potential matrices are extracted from the Nambu-Bethe-Salpeter wave functions obtained by the 2+1 flavor gauge configurations of CP-PACS/JLQCD Collaborations with a physical volume of 1.93 fm cubed and with m_pi/m_K = 0.96, 0.90, 0.86. The spatial structure and the quark mass dependence of the potential matrix in the baryon basis and in the SU(3) basis are investigated.
We investigate baryon-baryon interactions with strangeness $S=-2$ and isospin I=0 system from Lattice QCD. In order to solve this system, we prepare three types of baryon-baryon operators ($LambdaLambda$, $NXi$ and $SigmaSigma$) for the sink and cons
We investigate baryon-baryon interactions with strangeness $S=-2$ and isospin I=0 system from Lattice QCD. In order to solve this system, we prepare three types of baryon-baryon operators ($Lambda-Lambda$, $N-Xi$ and $Sigma-Sigma$) for the sink and c
The strangeness $S=-2$ baryon-baryon interaction is investigated directly from the fundamental theory of the strong interaction, QCD. The HAL QCD method enables us to extract baryon interactions from the Nambu-Bethe-Salpeter wave functions without us
In this article, we review the HAL QCD method to investigate baryon-baryon interactions such as nuclear forces in lattice QCD. We first explain our strategy in detail to investigate baryon-baryon interactions by defining potentials in field theories
We report the recent progress on the determination of three-nucleon forces (3NF) in lattice QCD. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to define the potential in quantum field theory, and extract two-nucleon forces (2NF) and 3NF on