ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnesium doped helium nanodroplets

47   0   0.0 ( 0 )
 نشر من قبل Alberto Hernando
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the structure of $^4$He droplets doped with magnesium atoms using density functional theory. We have found that the solvation properties of this system strongly depend on the size of the $^4$He droplet. For small drops, Mg resides in a deep surface state, whereas for large size drops it is fully solvated but radially delocalized in their interior. We have studied the $3s3p$ $^1$P$_1 leftarrow 3s^2$ $^1$S$_0$ transition of the dopant, and have compared our results with experimental data from laser induced fluorescence (LIF). Line broadening effects due to the coupling of dynamical deformations of the surrounding helium with the dipole excitation of the impurity are explicitly taken into account. We show that the Mg radial delocalization inside large droplets may help reconcile the apparently contradictory solvation properties of magnesium as provided by LIF and electron-impact ionization experiments. The structure of $^4$He drops doped with two magnesium atoms is also studied and used to interpret the results of resonant two-photon-ionization (R2PI) and LIF experiments. We have found that the two solvated Mg atoms do not easily merge into a dimer, but rather form a weakly-bound state due to the presence of an energy barrier caused by the helium environment that keep them some 9.5 AA{} apart, preventing the formation of the Mg$_2$ molecule. From this observation, we suggest that Mg atoms in $^4$He drops may form, under suitable conditions, a soft ``foam-like aggregate rather than coalesce into a compact metallic cluster. Our findings are in qualitative agreement with recent R2PI experimental evidences. We predict that, contrarily, Mg atoms adsorbed in $^3$He droplets do not form such metastable aggregates.

قيم البحث

اقرأ أيضاً

Doubly-excited Rydberg states of helium (He) nanodroplets have been studied using synchrotron radiation. We observed Fano resonances related to the atomic N = 2,0 series as a function of droplet size. Although similar qualitatively to their atomic co unterparts, the resonance lines are broader and exhibit a shift in energy which increases for the higher excited states. Furthermore, additional resonances are observed which are not seen in atomic systems. We discuss these features in terms of delocalized atomic states perturbed by the surrounding He atoms and compare to singly excited droplets.
Interatomic Coulombic decay (ICD) is induced in helium (He) nanodroplets by photoexciting the n=2 excited state of He^+ using XUV synchrotron radiation. By recording multiple coincidence electron and ion images we find that ICD occurs in various loca tions at the droplet surface, inside the surface region, or in the droplet interior. ICD at the surface gives rise to energetic He^+ ions as previously observed for free He dimers. ICD deeper inside leads to the ejection of slow He^+ ions due to Coulomb explosion delayed by elastic collisions with neighboring He atoms, and to the formation of He_k^+ complexes.
A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and sta ble enough to be used for spectroscopy, as demonstrated on beam-depletion spectra of lithium atoms attached to helium nanodroplets. For the first time, helium droplets are doped with high temperature refractory materials such as titanium and tantalum. Doping with the non-volatile DNA basis Guanine is found to be efficient and a number of oligomers are detected.
Much of our knowledge about dynamics and functionality of molecular systems has been achieved with femtosecond time-resolved spectroscopy. Despite extensive technical developments over the past decades, some classes of systems have eluded dynamical s tudies so far. Here, we demonstrate that superfluid helium nanodroplets, acting as thermal bath of 0.4 K temperature to stabilize weakly bound or reactive systems, are well suited for time-resolved studies of single molecules solvated in the droplet interior. By observing vibrational wavepacket motion of indium dimers (In$_2$) for over 50 ps, we demonstrate that the perturbation imposed by this quantum liquid can be lower by a factor of 10-100 compared to any other solvent, which uniquely allows to study processes depending on long nuclear coherence in a dissipative environment. Furthermore, tailor-made microsolvation environments inside droplets will enable to investigate the solvent influence on intramolecular dynamics in a wide tuning range from molecular isolation to strong molecule-solvent coupling.
Helium tagging in action spectroscopy is an efficient method for measuring the absorption spectrum of complex molecular ions with minimal perturbations to the gas phase spectrum. We have used superfluid helium nanodroplets doped with corannulene to p repare cations of these molecules complexed with different numbers of He atoms. In total we identify 13 different absorption bands from corannulene cations between 5500 {AA} and 6000 {AA}. The He atoms cause a small, chemically induced redshift to the band positions of the corannulene ion. By studying this effect as a function of the number of solvating atoms we are able to identify the formation of solvation structures that are not visible in the mass spectrum. The solvation features detected with the action spectroscopy agree very well with the results of atomistic modeling based on path-integral molecular dynamics simulations. By additionally doping our He droplets with D$_2$, we produce protonated corannulene ions. The absorption spectrum of these ions differs significantly from the case of the radical cations as the numerous narrow bands are replaced by a broad absorption feature that spans nearly 2000 {AA} in width.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا