ﻻ يوجد ملخص باللغة العربية
Helium tagging in action spectroscopy is an efficient method for measuring the absorption spectrum of complex molecular ions with minimal perturbations to the gas phase spectrum. We have used superfluid helium nanodroplets doped with corannulene to prepare cations of these molecules complexed with different numbers of He atoms. In total we identify 13 different absorption bands from corannulene cations between 5500 {AA} and 6000 {AA}. The He atoms cause a small, chemically induced redshift to the band positions of the corannulene ion. By studying this effect as a function of the number of solvating atoms we are able to identify the formation of solvation structures that are not visible in the mass spectrum. The solvation features detected with the action spectroscopy agree very well with the results of atomistic modeling based on path-integral molecular dynamics simulations. By additionally doping our He droplets with D$_2$, we produce protonated corannulene ions. The absorption spectrum of these ions differs significantly from the case of the radical cations as the numerous narrow bands are replaced by a broad absorption feature that spans nearly 2000 {AA} in width.
We present the first measurement of a one-photon extreme-ultraviolet photoelectron spectrum (PES) of molecules embedded in superfluid helium nanodroplets. The PES of coronene is compared to gas phase and the solid phase PES, and to electron spectra o
Interatomic Coulombic decay (ICD) is induced in helium (He) nanodroplets by photoexciting the n=2 excited state of He^+ using XUV synchrotron radiation. By recording multiple coincidence electron and ion images we find that ICD occurs in various loca
Alignment of OCS, CS$_2$ and I$_2$ molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a non-resonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by
A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion have been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating
A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and sta