ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-lived nuclear coherences inside helium nanodroplets

62   0   0.0 ( 0 )
 نشر من قبل Markus Koch
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Much of our knowledge about dynamics and functionality of molecular systems has been achieved with femtosecond time-resolved spectroscopy. Despite extensive technical developments over the past decades, some classes of systems have eluded dynamical studies so far. Here, we demonstrate that superfluid helium nanodroplets, acting as thermal bath of 0.4 K temperature to stabilize weakly bound or reactive systems, are well suited for time-resolved studies of single molecules solvated in the droplet interior. By observing vibrational wavepacket motion of indium dimers (In$_2$) for over 50 ps, we demonstrate that the perturbation imposed by this quantum liquid can be lower by a factor of 10-100 compared to any other solvent, which uniquely allows to study processes depending on long nuclear coherence in a dissipative environment. Furthermore, tailor-made microsolvation environments inside droplets will enable to investigate the solvent influence on intramolecular dynamics in a wide tuning range from molecular isolation to strong molecule-solvent coupling.

قيم البحث

اقرأ أيضاً

Dimers and trimers of carbonyl sulfide (OCS) molecules embedded in helium nanodroplets are aligned by a linearly polarized 160 ps long moderately intense laser pulse and Coulomb exploded with an intense 40 fs long probe pulse in order to determine th eir structures. For the dimer, recording of 2D images of OCS$^+$ and S$^+$ ions and covariance analysis of the emission directions of the ions allow us to conclude that the structure is a slipped-parallel shape similar to the structure found for gas phase dimers. For the trimer, the OCS$^+$ ion images and corresponding covariance maps reveal the presence of a barrel-shaped structure (as in gas phase) but also other structures not present in the gas phase, most notably a linear chain structure.
Doubly-excited Rydberg states of helium (He) nanodroplets have been studied using synchrotron radiation. We observed Fano resonances related to the atomic N = 2,0 series as a function of droplet size. Although similar qualitatively to their atomic co unterparts, the resonance lines are broader and exhibit a shift in energy which increases for the higher excited states. Furthermore, additional resonances are observed which are not seen in atomic systems. We discuss these features in terms of delocalized atomic states perturbed by the surrounding He atoms and compare to singly excited droplets.
We have studied complexes of gold atoms and imidazole (C$_3$N$_2$H$_4$, abbreviated Im) produced in helium nanodroplets. Following the ionization of the doped droplets we detect a broad range of different Au$_m$Im$_n^+$ complexes, however we find tha t for specific values of $m$ certain $n$ are magic and thus particularly abundant. Our density functional theory calculations indicate that these abundant clusters sizes are partially the result of particularly stable complexes, e.g. AuIm$_2^+$, and partially due to a transition in fragmentation patterns from the loss of neutral imidazole molecules for large systems to the loss of neutral gold atoms for smaller systems.
We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics mu ch slower than that of isolated molecules and, surprisingly, complete absence of the sharp transient alignment recurrences characteristic of gas phase molecules. Our results presage a range of new opportunities for exploring both molecular dynamics in a dissipative environment and the properties of He nanodroplets.
Here, we report the observation of electron transfer mediated decay (ETMD) involving Mg clusters embedded in helium nanodroplets which is initiated by the ionization of helium followed by removal of two electrons from the Mg clusters of which one is transferred to the He environment neutralizing it while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. The photoelectron spectrum reveals a low energy ETMD peak. For Mg clusters larger than 5 atoms we observe stable doubly-ionized clusters. We argue that ETMD provides a new pathway to the formation of doubly-ionized cold species.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا