ﻻ يوجد ملخص باللغة العربية
We consider zero temperature solutions to the Abelian Higgs model coupled to gravity with a negative cosmological constant. With appropriate choices of parameters, the geometry contains two copies of anti-de Sitter space, one describing conformal invariance in the ultraviolet, and one in the infrared. The effective speed of signal propagation is smaller in the infrared. Greens functions and associated transport coefficients can have unusual power law scaling in the infrared. We provide an example in which the real part of the conductivity scales approximately as omega^3.5 for small omega.
We study a lattice model of interacting Dirac fermions in $(2+1)$ dimension space-time with an SU(4) symmetry. While increasing interaction strength, this model undergoes a {it continuous} quantum phase transition from the weakly interacting Dirac se
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl cur
We study quadratic gravity $R^2+R_{[mu u]}^2$ in the Palatini formalism where the connection and the metric are independent. This action has a {it gauged} scale symmetry (also known as Weyl gauge symmetry) of Weyl gauge field $v_mu= (tildeGamma_mu-Ga
We study a theory where the presence of an extra spin-two field coupled to gravity gives rise to a phase with spontaneously broken Lorentz symmetry. In this phase gravity is massive, and the Weak Equivalence Principle is respected. The newtonian pote
We study phase structure of mass-deformed ABJM theory which is a three dimensional $mathcal{N}=6$ superconformal theory deformed by mass parameters and has the gauge group $text{U}(N)times text{U}(N)$ with Chern-Simons levels $(k,-k)$ which may have