ترغب بنشر مسار تعليمي؟ اضغط هنا

New estimates and tests of independence in some copula models

150   0   0.0 ( 0 )
 نشر من قبل Salim Bouzebda
 تاريخ النشر 2011
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce new estimates and tests of independence in copula models with unknown margins using $phi$-divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an interior or a boundary value of the parameter space. Simulation results show that the choice of $chi^2$-divergence has good properties in terms of efficiency-robustness.



قيم البحث

اقرأ أيضاً

161 - Salim Bouzebda 2011
We introduce a new test procedure of independence in the framework of parametric copulas with unknown marginals. The method is based essentially on the dual representation of $chi^2$-divergence on signed finite measures. The asymptotic properties of the proposed estimate and the test statistic are studied under the null and alternative hypotheses, with simple and standard limit distributions both when the parameter is an interior point or not.
Rank correlations have found many innovative applications in the last decade. In particular, suitable rank correlations have been used for consistent tests of independence between pairs of random variables. Using ranks is especially appealing for con tinuous data as tests become distribution-free. However, the traditional concept of ranks relies on ordering data and is, thus, tied to univariate observations. As a result, it has long remained unclear how one may construct distribution-free yet consistent tests of independence between random vectors. This is the problem addressed in this paper, in which we lay out a general framework for designing dependence measures that give tests of multivariate independence that are not only consistent and distribution-free but which we also prove to be statistically efficient. Our framework leverages the recently introduced concept of center-outward ranks and signs, a multivariate generalization of traditional ranks, and adopts a common standard form for dependence measures that encompasses many popular examples. In a unified study, we derive a general asymptotic representation of center-outward rank-based test statistics under independence, extending to the multivariate setting the classical H{a}jek asymptotic representation results. This representation permits direct calculation of limiting null distributions and facilitates a local power analysis that provides strong support for the center-outward approach by establishing, for the first time, the nontrivial power of center-outward rank-based tests over root-$n$ neighborhoods within the class of quadratic mean differentiable alternatives.
179 - Hongjian Shi , Mathias Drton , 2019
This paper investigates the problem of testing independence of two random vectors of general dimensions. For this, we give for the first time a distribution-free consistent test. Our approach combines distance covariance with the center-outward ranks and signs developed in Hallin (2017). In technical terms, the proposed test is consistent and distribution-free in the family of multivariate distributions with nonvanishing (Lebesgue) probability densities. Exploiting the (degenerate) U-statistic structure of the distance covariance and the combinatorial nature of Hallins center-outward ranks and signs, we are able to derive the limiting null distribution of our test statistic. The resulting asymptotic approximation is accurate already for moderate sample sizes and makes the test implementable without requiring permutation. The limiting distribution is derived via a more general result that gives a new type of combinatorial non-central limit theorem for double- and multiple-indexed permutation statistics.
Deheuvels [J. Multivariate Anal. 11 (1981) 102--113] and Genest and R{e}millard [Test 13 (2004) 335--369] have shown that powerful rank tests of multivariate independence can be based on combinations of asymptotically independent Cram{e}r--von Mises statistics derived from a M{o}bius decomposition of the empirical copula process. A result on the large-sample behavior of this process under contiguous sequences of alternatives is used here to give a representation of the limiting distribution of such test statistics and to compute their relative local asymptotic efficiency. Local power curves and asymptotic relative efficiencies are compared under familiar classes of copula alternatives.
For some variants of regression models, including partial, measurement error or error-in-variables, latent effects, semi-parametric and otherwise corrupted linear models, the classical parametric tests generally do not perform well. Various modificat ions and generalizations considered extensively in the literature rests on stringent regularity assumptions which are not likely to be tenable in many applications. However, in such non-standard cases, rank based tests can be adapted better, and further, incorporation of rank analysis of covariance tools enhance their power-efficiency. Numerical studies and a real data illustration show the superiority of rank based inference in such corrupted linear models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا