ترغب بنشر مسار تعليمي؟ اضغط هنا

A new test procedure of independence in copula models via chi-square-divergence

154   0   0.0 ( 0 )
 نشر من قبل Salim Bouzebda
 تاريخ النشر 2011
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Salim Bouzebda




اسأل ChatGPT حول البحث

We introduce a new test procedure of independence in the framework of parametric copulas with unknown marginals. The method is based essentially on the dual representation of $chi^2$-divergence on signed finite measures. The asymptotic properties of the proposed estimate and the test statistic are studied under the null and alternative hypotheses, with simple and standard limit distributions both when the parameter is an interior point or not.



قيم البحث

اقرأ أيضاً

We introduce new estimates and tests of independence in copula models with unknown margins using $phi$-divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an i nterior or a boundary value of the parameter space. Simulation results show that the choice of $chi^2$-divergence has good properties in terms of efficiency-robustness.
63 - Thomas Royen 2016
A (p-1)-variate integral representation is given for the cumulative distribution function of the general p-variate non-central gamma distribution with a non-centrality matrix of any admissible rank. The real part of products of well known analytical functions is integrated over arguments from (-pi,pi). To facilitate the computation, these formulas are given more detailed for p=2 and p=3. These (p-1)-variate integrals are also derived for the diagonal of a non-central complex Wishart Matrix. Furthermore, some alternative formulas are given for the cases with an associated one-factorial (pxp)-correlation matrix R, i.e. R differs from a suitable diagonal matrix only by a matrix of rank 1, which holds in particular for all (3x3)-R with no vanishing correlation.
179 - Dennis Leung , Qi-Man Shao 2017
Let ${bf R}$ be the Pearson correlation matrix of $m$ normal random variables. The Raos score test for the independence hypothesis $H_0 : {bf R} = {bf I}_m$, where ${bf I}_m$ is the identity matrix of dimension $m$, was first considered by Schott (20 05) in the high dimensional setting. In this paper, we study the asymptotic minimax power function of this test, under an asymptotic regime in which both $m$ and the sample size $n$ tend to infinity with the ratio $m/n$ upper bounded by a constant. In particular, our result implies that the Raos score test is rate-optimal for detecting the dependency signal $|{bf R} - {bf I}_m|_F$ of order $sqrt{m/n}$, where $|cdot|_F$ is the matrix Frobenius norm.
We show that the distribution of the scalar Schur complement in a noncentral Wishart matrix is a mixture of central chi-square distributions with different degrees of freedom. For the case of a rank-1 noncentrality matrix, the weights of the mixture representation arise from a noncentral beta mixture of Poisson distributions.
We apply the holonomic gradient method to compute the distribution function of a weighted sum of independent noncentral chi-square random variables. It is the distribution function of the squared length of a multivariate normal random vector. We trea t this distribution as an integral of the normalizing constant of the Fisher-Bingham distribution on the unit sphere and make use of the partial differential equations for the Fisher-Bingham distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا