ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution-free consistent independence tests via center-outward ranks and signs

180   0   0.0 ( 0 )
 نشر من قبل Fang Han
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the problem of testing independence of two random vectors of general dimensions. For this, we give for the first time a distribution-free consistent test. Our approach combines distance covariance with the center-outward ranks and signs developed in Hallin (2017). In technical terms, the proposed test is consistent and distribution-free in the family of multivariate distributions with nonvanishing (Lebesgue) probability densities. Exploiting the (degenerate) U-statistic structure of the distance covariance and the combinatorial nature of Hallins center-outward ranks and signs, we are able to derive the limiting null distribution of our test statistic. The resulting asymptotic approximation is accurate already for moderate sample sizes and makes the test implementable without requiring permutation. The limiting distribution is derived via a more general result that gives a new type of combinatorial non-central limit theorem for double- and multiple-indexed permutation statistics.



قيم البحث

اقرأ أيضاً

Rank correlations have found many innovative applications in the last decade. In particular, suitable rank correlations have been used for consistent tests of independence between pairs of random variables. Using ranks is especially appealing for con tinuous data as tests become distribution-free. However, the traditional concept of ranks relies on ordering data and is, thus, tied to univariate observations. As a result, it has long remained unclear how one may construct distribution-free yet consistent tests of independence between random vectors. This is the problem addressed in this paper, in which we lay out a general framework for designing dependence measures that give tests of multivariate independence that are not only consistent and distribution-free but which we also prove to be statistically efficient. Our framework leverages the recently introduced concept of center-outward ranks and signs, a multivariate generalization of traditional ranks, and adopts a common standard form for dependence measures that encompasses many popular examples. In a unified study, we derive a general asymptotic representation of center-outward rank-based test statistics under independence, extending to the multivariate setting the classical H{a}jek asymptotic representation results. This representation permits direct calculation of limiting null distributions and facilitates a local power analysis that provides strong support for the center-outward approach by establishing, for the first time, the nontrivial power of center-outward rank-based tests over root-$n$ neighborhoods within the class of quadratic mean differentiable alternatives.
A popular approach for testing if two univariate random variables are statistically independent consists of partitioning the sample space into bins, and evaluating a test statistic on the binned data. The partition size matters, and the optimal parti tion size is data dependent. While for detecting simple relationships coarse partitions may be best, for detecting complex relationships a great gain in power can be achieved by considering finer partitions. We suggest novel consistent distribution-free tests that are based on summation or maximization aggregation of scores over all partitions of a fixed size. We show that our test statistics based on summation can serve as good estimators of the mutual information. Moreover, we suggest regularized tests that aggregate over all partition sizes, and prove those are consistent too. We provide polynomial-time algorithms, which are critical for computing the suggested test statistics efficiently. We show that the power of the regularized tests is excellent compared to existing tests, and almost as powerful as the tests based on the optimal (yet unknown in practice) partition size, in simulations as well as on a real data example.
We introduce new estimates and tests of independence in copula models with unknown margins using $phi$-divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an i nterior or a boundary value of the parameter space. Simulation results show that the choice of $chi^2$-divergence has good properties in terms of efficiency-robustness.
Deheuvels [J. Multivariate Anal. 11 (1981) 102--113] and Genest and R{e}millard [Test 13 (2004) 335--369] have shown that powerful rank tests of multivariate independence can be based on combinations of asymptotically independent Cram{e}r--von Mises statistics derived from a M{o}bius decomposition of the empirical copula process. A result on the large-sample behavior of this process under contiguous sequences of alternatives is used here to give a representation of the limiting distribution of such test statistics and to compute their relative local asymptotic efficiency. Local power curves and asymptotic relative efficiencies are compared under familiar classes of copula alternatives.
We study a stylized multiple testing problem where the test statistics are independent and assumed to have the same distribution under their respective null hypotheses. We first show that, in the normal means model where the test statistics are norma l Z-scores, the well-known method of (Benjamini and Hochberg, 1995) is optimal in some asymptotic sense. We then show that this is also the case of a recent distribution-free method proposed by Foygel-Barber and Cand`es (2015). The method is distribution-free in the sense that it is agnostic to the null distribution - it only requires that the null distribution be symmetric. We extend these optimality results to other location models with a base distribution having fast-decaying tails.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا