ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum reflection of helium atom beams from a microstructured grating

109   0   0.0 ( 0 )
 نشر من قبل Bum Suk Zhao
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe high-resolution diffraction patterns of a thermal-energy helium-atom beam reflected from a microstructured surface grating at grazing incidence. The grating consists of 10-$mu$m-wide Cr strips patterned on a quartz substrate and has a periodicity of 20 $mu$m. Fully-resolved diffraction peaks up to the $7^{rm th}$ order are observed at grazing angles up to 20 mrad. With changes in de Broglie wavelength or grazing angle the relative diffraction intensities show significant variations which shed light on the nature of the atom-surface interaction potential. The observations are explained in terms of quantum reflection at the long-range attractive Casimir-van der Waals potential.



قيم البحث

اقرأ أيضاً

481 - Bum Suk Zhao , Gerard Meijer , 2010
We report on the observation of emerging beam resonances, well known as Rayleigh-Wood anomalies and threshold resonances in photon and electron diffraction, respectively, in an atom-optical diffraction experiment. Diffraction of He atom beams reflect ed from a blazed ruled grating at grazing incidence has been investigated. The total reflectivity of the grating as well as the intensities of the diffracted beams reveal anomalies at the Rayleigh angles of incidence, i.e., when another diffracted beam merges parallel to the grating surface. The observed anomalies are discussed in terms of the classical wave-optical model of Rayleigh and Fano.
Quantum reflection of thermal He atoms from various surfaces (glass slide, GaAs wafer, flat and structured Cr) at grazing conditions is studied within the elastic close-coupling formalism. Comparison with the experimental results of B.S. Zhao et al, Phys. Rev. Lett. {bf 105}, 133203 (2010) is quite reasonable but the conclusions of the present theoretical analysis are different from those discussed in the experimental work. The universal linear behavior observed in the dependence of the reflection probability on the incident wave vector component perpendicular to the surface is only valid at small values of the component whereas, at larger values, deviation from the linearity is evident, approaching a quadratic dependence at higher values. The surface roughness seems to play no important role in this scattering. Moreover, the claim that one observes a transition from quantum to classical reflection seems to be imprecise.
We here report coherent reflection of thermal He atom beams from various microscopically rough surfaces at grazing incidence. For a sufficiently small normal component $k_z$ of the incident wave-vector of the atom the reflection probability is found to be a function of $k_z$ only. This behavior is explained by quantum-reflection at the attractive branch of the Casimir-van der Waals interaction potential. For larger values of $k_z$ the overall reflection probability decreases rapidly and is found to also depend on the parallel component $k_x$ of the wave-vector. The material specific $k_x$ dependence for this classical reflection at the repulsive branch of the potential is explained qualitatively in terms of the averaging-out of the surface roughness under grazing incidence conditions.
Quantum reflection is a universal property of atoms and molecules when scattered from surfaces in ultracold collisions. Recent experimental work has documented the quantum reflection and diffraction of He atoms, dimers, trimers and Neon atoms when re flected from a grating. Conditions for the observation of emerging beam resonances have been discussed and measured. In this paper, we provide a theoretical simulation of the quantum reflection in these cases from a grating. We confirm, as expected the universal dependence on the incident de Broglie wavelength only of the threshold angles for the observation of emerging beam resonances. However, the angular dependence of the reflection efficiencies, that is the ratio of scattered intensity into specific diffraction channels relative to the total intensity is found to be dependent on the specifics of the incident particle. The dependence of the reflection efficiency on the identity of the particle is intimately related to the fact that the incident energy dependence of quantum reflection depends on the details of the particle surface interaction.
We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicit y, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا