ﻻ يوجد ملخص باللغة العربية
We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicity, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions.
We report on the observation of emerging beam resonances, well known as Rayleigh-Wood anomalies and threshold resonances in photon and electron diffraction, respectively, in an atom-optical diffraction experiment. Diffraction of He atom beams reflect
We present the technical realization of a compact system for performing experiments with cold $^{87}{text{Rb}}$ and $^{39}{text{K}}$ atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of
A method for diffracting the weak probe beam into unidirectional and higher-order directions is proposed via a novel Rydberg electromagnetically induced grating, providing a new way for the implementations of quantum devices with cold Rydberg atoms.
Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order
We propose a new approach to characterizing the depths of optical lattices, in which an atomic gas is given a finite initial momentum, which leads to high amplitude oscillations in the zeroth diffraction order which are robust to finite-temperature e