ﻻ يوجد ملخص باللغة العربية
Quantum reflection of thermal He atoms from various surfaces (glass slide, GaAs wafer, flat and structured Cr) at grazing conditions is studied within the elastic close-coupling formalism. Comparison with the experimental results of B.S. Zhao et al, Phys. Rev. Lett. {bf 105}, 133203 (2010) is quite reasonable but the conclusions of the present theoretical analysis are different from those discussed in the experimental work. The universal linear behavior observed in the dependence of the reflection probability on the incident wave vector component perpendicular to the surface is only valid at small values of the component whereas, at larger values, deviation from the linearity is evident, approaching a quadratic dependence at higher values. The surface roughness seems to play no important role in this scattering. Moreover, the claim that one observes a transition from quantum to classical reflection seems to be imprecise.
We here report coherent reflection of thermal He atom beams from various microscopically rough surfaces at grazing incidence. For a sufficiently small normal component $k_z$ of the incident wave-vector of the atom the reflection probability is found
We show that periodically doped, flat surfaces can act as reflective diffraction gratings for atomic and molecular matter waves. The diffraction element is realized by exploiting that charged dopants locally suppress quantum reflection from the Casim
We observe high-resolution diffraction patterns of a thermal-energy helium-atom beam reflected from a microstructured surface grating at grazing incidence. The grating consists of 10-$mu$m-wide Cr strips patterned on a quartz substrate and has a peri
We demonstrate the realization of a quantum register using a string of single neutral atoms which are trapped in an optical dipole trap. The atoms are selectively and coherently manipulated in a magnetic field gradient using microwave radiation. Our
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a `quantum memory while idle.