ترغب بنشر مسار تعليمي؟ اضغط هنا

Loop models for CFTs

113   0   0.0 ( 0 )
 نشر من قبل Mohammad Ali Rajabpour
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. A. Rajabpour




اسأل ChatGPT حول البحث

By interpreting the fusion matrix as an adjacency matrix we associate a loop model to every primary operator of a generic conformal field theory. The weight of these loop models is given by the quantum dimension of the corresponding primary operator. Using the known results for the O(n) models we establish a relationship between these models and SLEs. The method is applied to WZW, $c<1$ minimal conformal field theories and other coset models.



قيم البحث

اقرأ أيضاً

We study a model of dilute oriented loops on the square lattice, where each loop is compatible with a fixed, alternating orientation of the lattice edges. This implies that loop strands are not allowed to go straight at vertices, and results in an en hancement of the usual O(n) symmetry to U(n). The corresponding transfer matrix acts on a number of representations (standard modules) that grows exponentially with the system size. We derive their dimension and those of the centraliser by both combinatorial and algebraic techniques. A mapping onto a field theory permits us to identify the conformal field theory governing the critical range, $n le 1$. We establish the phase diagram and the critical exponents of low-energy excitations. For generic n, there is a critical line in the universality class of the dilute O(2n) model, terminating in an SU(n+1) point. The case n=1 maps onto the critical line of the six-vertex model, along which exponents vary continuously.
Potts spin systems play a fundamental role in statistical mechanics and quantum field theory, and can be studied within the spin, the Fortuin-Kasteleyn (FK) bond or the $q$-flow (loop) representation. We introduce a Loop-Cluster (LC) joint model of b ond-occupation variables interacting with $q$-flow variables, and formulate a LC algorithm that is found to be in the same dynamical universality as the celebrated Swendsen-Wang algorithm. This leads to a theoretical unification for all the representations, and numerically, one can apply the most efficient algorithm in one representation and measure physical quantities in others. Moreover, by using the LC scheme, we construct a hierarchy of geometric objects that contain as special cases the $q$-flow clusters and the backbone of FK clusters, the exact values of whose fractal dimensions in two dimensions remain as an open question. Our work not only provides a unified framework and an efficient algorithm for the Potts model, but also brings new insights into rich geometric structures of the FK clusters.
102 - M. A. Rajabpour 2009
We propose a systematic method to extract conformal loop models for rational conformal field theories (CFT). Method is based on defining an ADE model for boundary primary operators by using the fusion matrices of these operators as adjacency matrices . These loop models respect the conformal boundary conditions. We discuss the loop models that can be extracted by this method for minimal CFTs and then we will give dilute O(n) loop models on the square lattice as examples for these loop models. We give also some proposals for WZW SU(2) models.
Computing marginal distributions of discrete or semidiscrete Markov random fields (MRFs) is a fundamental, generally intractable problem with a vast number of applications in virtually all fields of science. We present a new family of computational s chemes to approximately calculate the marginals of discrete MRFs. This method shares some desirable properties with belief propagation, in particular, providing exact marginals on acyclic graphs, but it differs with the latter in that it includes some loop corrections; i.e., it takes into account correlations coming from all cycles in the factor graph. It is also similar to the adaptive Thouless-Anderson-Palmer method, but it differs with the latter in that the consistency is not on the first two moments of the distribution but rather on the value of its density on a subset of values. The results on finite-dimensional Isinglike models show a significant improvement with respect to the Bethe-Peierls (tree) approximation in all cases and with respect to the plaquette cluster variational method approximation in many cases. In particular, for the critical inverse temperature $beta_{c}$ of the homogeneous hypercubic lattice, the expansion of $left(dbeta_{c}right)^{-1}$ around $d=infty$ of the proposed scheme is exact up to the $d^{-4}$ order, whereas the two latter are exact only up to the $d^{-2}$ order.
We show how the directed-loop Monte Carlo algorithm can be applied to study vertex models. The algorithm is employed to calculate the arrow polarization in the six-vertex model with the domain wall boundary conditions (DWBC). The model exhibits spati ally separated ordered and ``disordered regions. We show how the boundary between these regions depends on parameters of the model. We give some predictions on the behavior of the polarization in the thermodynamic limit and discuss the relation to the Arctic Circle theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا