ﻻ يوجد ملخص باللغة العربية
Computing marginal distributions of discrete or semidiscrete Markov random fields (MRFs) is a fundamental, generally intractable problem with a vast number of applications in virtually all fields of science. We present a new family of computational schemes to approximately calculate the marginals of discrete MRFs. This method shares some desirable properties with belief propagation, in particular, providing exact marginals on acyclic graphs, but it differs with the latter in that it includes some loop corrections; i.e., it takes into account correlations coming from all cycles in the factor graph. It is also similar to the adaptive Thouless-Anderson-Palmer method, but it differs with the latter in that the consistency is not on the first two moments of the distribution but rather on the value of its density on a subset of values. The results on finite-dimensional Isinglike models show a significant improvement with respect to the Bethe-Peierls (tree) approximation in all cases and with respect to the plaquette cluster variational method approximation in many cases. In particular, for the critical inverse temperature $beta_{c}$ of the homogeneous hypercubic lattice, the expansion of $left(dbeta_{c}right)^{-1}$ around $d=infty$ of the proposed scheme is exact up to the $d^{-4}$ order, whereas the two latter are exact only up to the $d^{-2}$ order.
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im
We investigate the generalized p-spin models that contain arbitrary diagonal operators U with no reflection symmetry. We derive general equations that give an opportunity to uncover the behavior of the system near the glass transition at different (c
Recently, generative machine-learning models have gained popularity in physics, driven by the goal of improving the efficiency of Markov chain Monte Carlo techniques and of exploring their potential in capturing experimental data distributions. Motiv
We investigate and contrast, via entropic sampling based on the Wang-Landau algorithm, the effects of quenched bond randomness on the critical behavior of two Ising spin models in 2D. The random bond version of the superantiferromagnetic (SAF) square
We investigate and contrast, via the Wang-Landau (WL) algorithm, the effects of quenched bond randomness on the self-averaging properties of two Ising spin models in 2d. The random bond version of the superantiferromagnetic (SAF) square model with ne