ﻻ يوجد ملخص باللغة العربية
We propose a systematic method to extract conformal loop models for rational conformal field theories (CFT). Method is based on defining an ADE model for boundary primary operators by using the fusion matrices of these operators as adjacency matrices. These loop models respect the conformal boundary conditions. We discuss the loop models that can be extracted by this method for minimal CFTs and then we will give dilute O(n) loop models on the square lattice as examples for these loop models. We give also some proposals for WZW SU(2) models.
Classification of the non-equilibrium quantum many-body dynamics is a challenging problem in condensed matter physics and statistical mechanics. In this work, we study the basic question that whether a (1+1) dimensional conformal field theory (CFT) i
In this paper and its sequel, we study non-equilibrium dynamics in driven 1+1D conformal field theories (CFTs) with periodic, quasi-periodic, and random driving. We study a soluble family of drives in which the Hamiltonian only involves the energy-mo
We study the energy level spacing of perturbed conformal minimal models in finite volume, considering perturbations of such models that are massive but not necessarily integrable. We compute their spectrum using a renormalization group improved trunc
We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW-ansatz by bot
We investigate the behavior of the return amplitude ${cal F}(t)= |langlePsi(0)|Psi(t)rangle|$ following a quantum quench in a conformal field theory (CFT) on a compact spatial manifold of dimension $d-1$ and linear size $O(L)$, from a state $|Psi(0)r