ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Radiative Feedback from Reionization

277   0   0.0 ( 0 )
 نشر من قبل Ruben Salvaterra
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the effect of cosmic radiative feedback from the sources of reionization on the thermal evolution of the intergalactic medium. We find that different prescriptions for this feedback predict quite different thermal and reionization histories. In spite of this, current data can not discriminate among different reionization scenarios. We find that future observations both from 21-cm and CMB experiments can be used to break the degeneracy among model parameters provided that we will be able to remove the foreground signal at the percent (or better) level.



قيم البحث

اقرأ أيضاً

128 - Huanqing Chen 2019
Recent observations have found that many $zsim 6$ quasar fields lack galaxies. This unexpected lack of galaxies may potentially be explained by quasar radiation feedback. In this paper I present a suite of 3D radiative transfer cosmological simulatio ns of quasar fields. I find that quasar radiation suppresses star formation in low mass galaxies, mainly by photo-dissociating their molecular hydrogen. Photo-heating also plays a role, but only after $sim$100 Myr. However, galaxies which already have stellar mass above $10^5 M_odot$ when the quasar turns on will not be suppressed significantly. Quasar radiative feedback suppresses the faint end of the galaxy luminosity function (LF) within $1$ pMpc, but to a far lesser degree than the field-to-field variation of the LF. My study also suggests that by using the number of bright galaxies ($M_{1500}<-16$) around quasars, we can potentially recover the underlying mass overdensity, which allows us to put reliable constraints on quasar environments.
We use a semi-analytical model to study the impact of reionization, and the associated radiative feedback, on galaxy formation. Two feedback models have been considered: (i) a standard prescription, according to which star formation is totally suppre ssed in galaxies with circular velocity below a critical threshold (model CF06) and (ii) a characterization based on the filtering scale (model G00), allowing for a gradual reduction of the gas available for star formation in low-mass galaxies. In model CF06 reionization starts at z ~ 15-20, is 85% complete by z ~ 10; at the same z, the ionized fraction is 16% in model G00. The models match SDSS constraints on the evolution of the neutral hydrogen fraction at z < 7, but predict different Thomson optical depths, tau_e = 0.1017 (CF06), and 0.0631 (G00); such values are within 1 sigma of the WMAP 3-yr determination. Both models are in remarkable good agreement with additional existing data (evolution of Lyman-limit systems, cosmic star formation history, high-z galaxy counts, IGM thermal history), which therefore cannot be used to discriminate among different feedback models. Deviations among radiative feedback prescriptions emerge when considering the expected HI 21 cm background signal, where a ~ 15 mK absorption feature in the range 75-100 MHz is present in model G00 and a global shift of the emission feature preceding reionization towards larger frequencies occurs in the same model. Single dish observations with existing or forthcoming low-frequency radio telescopes can achieve mK sensitivity, allowing the identification of these features provided that foregrounds can be accurately subtracted.
The ionizing ultraviolet background (UVB) during reionization can suppress the gas content of low-mass galaxies, even those capable of efficient atomic cooling, and thus lead to an extended reionization epoch. In this work, we explore the importance of negative UV radiative feedback on Tvir > 10^4 K halos during the middle and late stages of reionization. We do not try to self-consistently model reionization; instead, we explore a large parameter space in an attempt to draw general, robust conclusions. We do this using a tiered approach. Using 1-D hydrodynamical simulations, we model the collapse of gas onto halos of various masses under UVBs of various intensities. We then generate realistic, parametrized maps of the inhomogeneous UVB, using large-scale semi-numeric simulations. By combining these results, we find that under all reasonably conservative scenarios, UV feedback on atomically-cooled halos is not strong enough to notably delay the bulk of reionization. Such a delay is only likely if ionizing efficiencies of z > 10 sources are much higher (~ two orders of magnitude) than z ~ 6 data seem to imply. We also find that feedback is very strongly dependent on halo mass. Our results suggest that the natural time-scale for the bulk of reionization is the growth of the global collapsed fraction contained in Tvir > 10^4 K halos. Finally, our results underscore the importance of taking into account extended dynamical ranges when modeling reionization.
We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive population III stars are found to be able to largely ionize H and, subsequently, He and He$^+$, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of cosmic fossils such as low-mass dwarf galaxies, the role of AGNi during reionization, the early formation of extended disks and angular-momentum catastrophe.
75 - Hy Trac 2006
We present a new hybrid code for large volume, high resolution simulations of cosmic reionization, which utilizes a N-body algorithm for dark matter, physically motivated prescriptions for baryons and star formation, and an adaptive ray tracing algor ithm for radiative transfer of ionizing photons. Two test simulations each with 3 billion particles and 400 million rays in a 50 Mpc/h box have been run to give initial results. Halos are resolved down to virial temperatures of 10^4 K for the redshift range of interest in order to robustly model star formation and clumping factors. This is essential to correctly account for ionization and recombination processes. We find that the halos and sources are strongly biased with respect to the underlying dark matter, re-enforcing the requirement of large simulation boxes to minimize cosmic variance and to obtain a qualitatively correct picture of reionization. We model the stellar initial mass function (IMF), by following the spatially dependent gas metallicity evolution, and distinguish between the first generation, Population III (PopIII) stars and the second generation, Population II (PopII) stars. The PopIII stars with a top-heavy IMF produce an order of magnitude more ionizing photons at high redshifts z>10, resulting in a more extended reionization. In our simulations, complete overlap of HII regions occurrs at z~6.5 and the computed mass and volume weighted residual HI fractions at 5<z<6.5 are both in good agreement with high redshift quasar absorption measurements from SDSS. The values for the Thomson optical depth are consistent within 1-sigma of the current best-fit value from third-year WMAP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا