ﻻ يوجد ملخص باللغة العربية
The ionizing ultraviolet background (UVB) during reionization can suppress the gas content of low-mass galaxies, even those capable of efficient atomic cooling, and thus lead to an extended reionization epoch. In this work, we explore the importance of negative UV radiative feedback on Tvir > 10^4 K halos during the middle and late stages of reionization. We do not try to self-consistently model reionization; instead, we explore a large parameter space in an attempt to draw general, robust conclusions. We do this using a tiered approach. Using 1-D hydrodynamical simulations, we model the collapse of gas onto halos of various masses under UVBs of various intensities. We then generate realistic, parametrized maps of the inhomogeneous UVB, using large-scale semi-numeric simulations. By combining these results, we find that under all reasonably conservative scenarios, UV feedback on atomically-cooled halos is not strong enough to notably delay the bulk of reionization. Such a delay is only likely if ionizing efficiencies of z > 10 sources are much higher (~ two orders of magnitude) than z ~ 6 data seem to imply. We also find that feedback is very strongly dependent on halo mass. Our results suggest that the natural time-scale for the bulk of reionization is the growth of the global collapsed fraction contained in Tvir > 10^4 K halos. Finally, our results underscore the importance of taking into account extended dynamical ranges when modeling reionization.
Recent observations have found that many $zsim 6$ quasar fields lack galaxies. This unexpected lack of galaxies may potentially be explained by quasar radiation feedback. In this paper I present a suite of 3D radiative transfer cosmological simulatio
We explore the effect of cosmic radiative feedback from the sources of reionization on the thermal evolution of the intergalactic medium. We find that different prescriptions for this feedback predict quite different thermal and reionization historie
The feasibility of making highly redshifted HI 21-cm (rest frame) measurements from an early epoch of the Universe between the Dark Ages and Reionization (i.e., z>6 and nu<200 MHz) to probe the effects of feedback from the first stars and quasars is
Disks are ubiquitous in stellar astronomy, and play a crucial role in the formation and evolution of stars. In this contribution we present an overview of the most recent results, with emphasis on high spatial and spectral resolution. We will start w
Recent work suggests that the first generation of stars, the so-called Population III (Pop III), could have formed primarily in binaries or as members of small multiple systems. Here we investigate the impact of X-ray feedback from High-Mass X-ray Bi