ترغب بنشر مسار تعليمي؟ اضغط هنا

Iron single crystal growth from a lithium-rich melt

78   0   0.0 ( 0 )
 نشر من قبل Manuel Fix
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

alpha-Fe single crystals of rhombic dodecahedral habit were grown from a melt of Li$_{84}$N$_{12}$Fe$_{sim 3}$. Crystals of several millimeter along a side form at temperatures around $T approx 800^circ$C. Upon further cooling the growth competes with the formation of Fe-doped Li$_3$N. The b.c.c. structure and good sample quality of alpha-Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90,ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

قيم البحث

اقرأ أيضاً

We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt $rightarrow$ crystal transformation. Here we demonstrate successful molecular dynamics simulations of melt-growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during the melt-growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods
We report an optimized chemical vapor transport method, which allows growing FeP single crystals up to 500 mg in mass and 80 $mm^{3}$ in volume. The high quality of the crystals obtained by this method was confirmed by means of EDX, high-resolution T EM, low-temperature single crystal XRD and neutron diffraction experiments. We investigated the transport and magnetic properties of the single crystals and calculated the electronic band structure of FeP. We show both theoretically and experimentally, that the ground state of FeP is metallic. The examination of the magnetic data reveals antiferromagnetic order below T$_{N}$ =119 K while transport remains metallic in both the paramagnetic and the antiferromagnetic phase. The analysis of the neutron diffraction data shows an incommensurate magnetic structure with the propagation vector Q=(0, 0, $pm{delta}$), where ${delta}$ $sim$ 0.2. For the full understanding of the magnetic state, further experiments are needed. The successful growth of large high-quality single crystals opens the opportunity for further investigations of itinerant magnets with incommensurate spin structures using a wide range of experimental tools.
The atomic displacements associated with the freezing of metals and salts are calculated by treating crystal growth as an assignment problem through the use of an optimal transport algorithm. Converting these displacements into time scales based on t he dynamics of the bulk liquid, we show that we can predict the activation energy for crystal growth rates, including activation energies significantly smaller than those for atomic diffusion in the liquid. The exception to this success, pure metals that freeze into face centred cubic crystals with little to no activation energy, are discussed. The atomic displacements generated by the assignment algorithm allows us to quantify the key roles of crystal structure and liquid caging length in determining the temperature dependence of crystal growth kinetics.
Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concen tration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profile of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. However, shrinkage and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.
In this work we study the diffusion mechanisms in lithium disilicate melt using molecular dynamics simulation, which has an edge over other simulation methods because it can track down actual atomic rearrangements in materials once a realistic intera ction potential is applied. Our simulation results of diffusion coefficients show an excellent agreement with experiments. We also demonstrate that our system obeys the famous Stokes-Einstein relation at least down to 1400 K, while a decoupling between relaxation and viscosity takes place at a higher temperature. Additionally, an analysis on the dynamical behavior of slow-diffusing atoms reveals explicitly the presence of dynamical heterogeneities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا