ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films

132   0   0.0 ( 0 )
 نشر من قبل Daniel Reisinger
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows to monitor the growth of oxide thin films even at high oxygen pressure. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas for perovskites such as SrTiO3 or doped LaMnO3 a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, a sub-unit cell molecular or block layer growth is established resulting in several RHEED intensity oscillations during the growth of a single unit-cell.



قيم البحث

اقرأ أيضاً

458 - A. Muller 2009
Magnetite thin fims have been grown epitaxially on ZnO and MgO substrates using molecular beam epitaxy. The film quality was found to be strongly dependent on the oxygen partial pressure during growth. Structural, electronic, and magnetic properties were analyzed utilizing Low Energy Electron Diffraction (LEED), HArd X-ray PhotoElectron Spectroscopy (HAXPES), Magneto Optical Kerr Effect (MOKE), and X-ray Magnetic Circular Dichroism (XMCD). Diffraction patterns show clear indication for growth in the (111) direction on ZnO. Vertical structure analysis by HAXPES depth profiling revealed uniform magnetite thin films on both type of substrates. Both, MOKE and XMCD measurements show in-plane easy magnetization with a reduced magnetic moment in case of the films on ZnO.
Inversion symmetry breaking is a ubiquitous concept in condensed-matter science. On the one hand, it is a prerequisite for many technologically relevant effects such as piezoelectricity, photovoltaic and nonlinear optical properties and spin-transpor t phenomena. On the other hand, it may determine abstract properties such as the electronic topology in quantum materials. Therefore, the creation of materials where inversion symmetry can be turned on or off by design may be the ultimate route towards controlling parity-related phenomena and functionalities. Here, we engineer the symmetry of ultrathin epitaxial oxide films by sub-unit-cell growth control. We reversibly activate and deactivate inversion symmetry in the layered hexagonal manganites, h-RMnO$_3$ with R = Y, Er, Tb. While an odd number of half-unit-cell layers exhibits a breaking of inversion symmetry through its arrangement of MnO$_5$ bipyramids, an even number of such half-unit-cell layers takes on a centrosymmetric structure. Here we control the resulting symmetry by tracking the growth in situ via optical second-harmonic generation. We furthermore demonstrate that our symmetry engineering works independent of the choice of R and even in heterostructures mixing constituents with different R in a two-dimensional growth mode. Symmetry engineering on the atomic level thus suggests a new platform for the controlled activation and deactivation of symmetry-governed functionalities in oxide-electronic epitaxial thin films.
Epitaxy of oxide materials on silicon (Si) substrates is of great interest for future functional devices using the large variety of physical properties of the oxides as ferroelectricity, ferromagnetism, or superconductivity. Recently, materials with high spin polarization of the charge carriers have become interesting for semiconductor-oxide hybrid devices in spin electronics. Here, we report on pulsed laser deposition of magnetite (Fe3O4) on Si(001) substrates cleaned by an in situ laser beam high temperature treatment. After depositing a double buffer layer of titanium nitride (TiN) and magnesium oxide (MgO), a high quality epitaxial magnetite layer can be grown as verified by RHEED intensity oscillations and high resolution x-ray diffraction.
64 - C.E. Ekuma , S. Najmaei , 2019
Atomically transparent vertically aligned ZnO-based van der Waals material have been developed by surface passivation and encapsulation with atomic layers of MgO using materials by design; the physical properties investigated. The passivation and enc apsulation led to a remarkable improvement in optical and electronic properties. The valence-band offset $Delta E_v$ between MgO and ZnO, ZnO and MgO/ZnO, and ZnO and MgO/ZnO/MgO heterointerfaces are determined to be 0.37 $pm$0.02, -0.05$pm$0.02, and -0.11$pm$0.02 eV, respectively; the conduction-band offset $Delta E_c$ is deduced to be 0.97$pm$0.02, 0.46$pm$0.02, and 0.59$pm$0.02 eV indicating straddling type-I in MgO and ZnO, and staggering type-II heterojunction band alignment in ZnO and the various heterostructures. The band-offsets and interfacial charge transfer are used to explain the origin of $n$-type conductivity in the superlattices. Enhanced optical absorption due to carrier confinement in the layers demonstrates that MgO is an excellent high-$kappa$ dielectric gate oxide for encapsulating ZnO-based optoelectronic devices.
We report about La0.67Sr0.33MnO3 single crystal manganite thin films in interaction with a gold capping layer. With respect to uncoated manganite layers of the same thickness, Au-capped 4 nm-thick manganite films reveal a dramatic reduction (about 18 5 K) of the Curie temperature TC and a lower saturation low-temperature magnetization M0. A sizeable TC reduction (about 60 K) is observed even when an inert SrTiO3 layer is inserted between the gold film and the 4 nm-thick manganite layer, suggesting that this effect might have an electrostatic origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا