ترغب بنشر مسار تعليمي؟ اضغط هنا

The Interaction of an 180 degree Ferroelectric Domain Wall with a Biased Scanning Probe Microscopy Tip: Effective Wall Geometry and Thermodynamics in Ginzburg-Landau-Devonshire Theory

62   0   0.0 ( 0 )
 نشر من قبل Anna Morozovska Nickolaevna
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction of ferroelectric 180 degree domain wall with a strongly inhomogeneous electric field of biased Scanning Probe Microscope tip is analyzed within continuous Landau-Ginzburg-Devonshire theory. Equilibrium shape of the initially flat domain wall boundary bends, attracts or repulses from the probe apex, depending on the sign and value of the applied bias. For large tip-wall separations, the probe-induced domain nucleation is possible. The approximate analytical expressions for the polarization distribution are derived using direct variational method. The expressions provide insight how the equilibrium polarization distribution depends on the wall finite-width, correlation and depolarization effects, electrostatic potential distribution of the probe and ferroelectric material parameters.

قيم البحث

اقرأ أيضاً

Thermodynamics of tip-induced nanodomain formation in scanning probe microscopy of ferroelectric films and crystals is studied using the Landau-Ginzburg-Devonshire phenomenological approach. The local redistribution of polarization induced by the bia sed probe apex is analyzed including the effects of polarization gradients, field dependence of dielectric properties, intrinsic domain wall width, and film thickness. The polarization distribution inside subcritical nucleus of the domain preceding the nucleation event is very smooth and localized below the probe, and the electrostatic field distribution is dominated by the tip. In contrast, polarization distribution inside the stable domain is rectangular-like, and the associated electrostatic fields clearly illustrate the presence of tip-induced and depolarization field components. The calculated coercive biases of domain formation are in a good agreement with available experimental results for typical ferroelectric materials. The microscopic origin of the observed domain tip elongation in the region where the probe electric field is much smaller than the intrinsic coercive field is the positive depolarization field in front of the moving counter domain wall. For infinitely thin domain walls local domain breakdown through the sample depth appears. The results obtained here are complementary to the Landauer-Molotskii energetic approach.
Modulating the polarization of a beam of quantum particles is a powerful method to tailor the macroscopic properties of the ensuing energy flux as it directly influences the way in which its quantum constituents interact with other particles, waves o r continuum media. Practical polarizers, being well developed for electric and electromagnetic energy, have not been proposed to date for heat fluxes carried by phonons. Here we report on atomistic phonon transport calculations demonstrating that ferroelectric domain walls can operate as phonon polarizers when a heat flux pierces them. Our simulations for representative ferroelectric perovskite PbTiO$_3$ show that the structural inhomogeneity associated to the domain walls strongly suppresses transverse phonons, while longitudinally polarized modes can travel through multiple walls in series largely ignoring their presence.
Using multiscaling analysis, we compare the characteristic roughening of ferroelectric domain walls in PZT thin films with numerical simulations of weakly pinned one-dimensional interfaces. Although at length scales up to a length scale greater or eq ual to 5 microns the ferroelectric domain walls behave similarly to the numerical interfaces, showing a simple mono-affine scaling (with a well-defined roughness exponent), we demonstrate more complex scaling at higher length scales, making the walls globally multi-affine (varying roughness exponent at different observation length scales). The dominant contributions to this multi-affine scaling appear to be very localized variations in the disorder potential, possibly related to dislocation defects present in the substrate.
199 - Gongzheng Chen , Jin Lan , Tai Min 2021
Ferroelectric materials are spontaneous symmetry breaking systems characterized by ordered electric polarizations. Similar to its ferromagnetic counterpart, a ferroelectric domain wall can be regarded as a soft interface separating two different ferr oelectric domains. Here we show that two bound state excitations of electric polarization (polar wave), or the vibration and breathing modes, can be hosted and propagate within the ferroelectric domain wall. Specially, the vibration polar wave has zero frequency gap, thus is constricted deeply inside ferroelectric domain wall, and can propagate even in the presence of local pinnings. The ferroelectric domain wall waveguide as demonstrated here, offers new paradigm in developing ferroelectric information processing units.
We have studied a series of Pt/Co/M epitaxial trilayers, in which Co is sandwiched between Pt and a non magnetic layer M (Pt, Ir, Cu, Al). Using polar magneto-optical Kerr microscopy, we show that the field- induced domain wall speeds are strongly de pendent on the nature of the top layer, they increase going from M=Pt to lighter top metallic overlayers, and can reach several 100 m/s for Pt/Co/Al. The DW dynamics is consistent with the presence of chiral Neel walls stabilized by interfacial Dzyaloshinskii-Moriya interaction (DMI) whose strength increases going from Pt to Al top layers. This is explained by the presence of DMI with opposite sign at the Pt/Co and Co/M interfaces, the latter increasing in strength going towards heavier atoms, possibly due to the increasing spin-orbit interaction. This work shows that in non-centrosymmetric trilayers the domain wall dynamics can be finely tuned by engineering the DMI strength, in view of efficient devices for logic and spitronics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا