ﻻ يوجد ملخص باللغة العربية
We have studied a series of Pt/Co/M epitaxial trilayers, in which Co is sandwiched between Pt and a non magnetic layer M (Pt, Ir, Cu, Al). Using polar magneto-optical Kerr microscopy, we show that the field- induced domain wall speeds are strongly dependent on the nature of the top layer, they increase going from M=Pt to lighter top metallic overlayers, and can reach several 100 m/s for Pt/Co/Al. The DW dynamics is consistent with the presence of chiral Neel walls stabilized by interfacial Dzyaloshinskii-Moriya interaction (DMI) whose strength increases going from Pt to Al top layers. This is explained by the presence of DMI with opposite sign at the Pt/Co and Co/M interfaces, the latter increasing in strength going towards heavier atoms, possibly due to the increasing spin-orbit interaction. This work shows that in non-centrosymmetric trilayers the domain wall dynamics can be finely tuned by engineering the DMI strength, in view of efficient devices for logic and spitronics applications.
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen
We present a general approach for studying the dynamics of domain walls in biaxial ferromagnetic stripes with functionally graded Dzyaloshinskii-Moriya interaction (DMI). By engineering the spatial profile of the DMI parameter we propose the concept
We present a systematic analysis of our ability to tune chiral Dzyaloshinskii-Moriya Interactions (DMI) in compensated ferrimagnetic Pt/GdCo/Pt1-xWx trilayers by cap layer composition. Using first principles calculations, we show that the DMI increas
We have characterized the strength of the interfacial Dyzaloshinskii-Moriya interaction (DMI) in ultrathin perpendicularly magnetized CoFeB/MgO films, grown on different underlayers of W, TaN, and Hf, using two experimental methods. First, we determi
We measure and analyze the chirality of the Dzyaloshinskii-Moriya interaction (DMI) stabilized spin textures in multilayers of Ta/Co$_{20}$Fe$_{60}$B$_{20}$/MgO. The effective DMI is measured experimentally using domain wall motion measurements, both