ﻻ يوجد ملخص باللغة العربية
We give new information about the geometry of closed, orientable hyperbolic 3-manifolds with 4-free fundamental group. As an application we show that such a manifold has volume greater than 3.44. This is in turn used to show that if M is a closed orientable hyperbolic 3-manifold such that vol M < 3.44, then H_1(M;Z/2Z) has dimension at most 7.
We prove that there are only finitely many conjugacy classes of arithmetic maximal hyperbolic reflection groups.
We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication,
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a sur
It is known that every infinite index quasi-convex subgroup $H$ of a non-elementary hyperbolic group $G$ is a free factor in a larger quasi-convex subgroup of $G$. We give a probabilistic generalization of this result. That is, we show that when $R$
Given a 2-manifold, a fundamental question to ask is which groups can be realized as the isometry group of a Riemannan metric of constant curvature on the manifold. In this paper, we give a nearly complete classification of such groups for infinite-g