ﻻ يوجد ملخص باللغة العربية
We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for MCG(S), namely that groups quasi-isometric to MCG(S) are virtually equal to it. (The latter theorem was proved by Hamenstadt using different methods). As part of our approach we obtain several other structural results: a description of the tree-graded structure on the asymptotic cone of MCG(S); a characterization of the image of the curve-complex projection map from MCG(S) to the product of the curve complexes of essential subsurfaces of S; and a construction of Sigma-hulls in MCG(S), an analogue of convex hulls.
We prove that the mapping class group of a surface obtained from removing a Cantor set from either the 2-sphere, the plane, or the interior of the closed 2-disk has no proper countable-index subgroups. The proof is an application of the automatic con
We survey recent developments on mapping class groups of surfaces of infinite topological type.
We study two actions of big mapping class groups. The first is an action by isometries on a Gromov-hyperbolic graph. The second is an action by homeomorphisms on a circle in which the vertices of the graph naturally embed. The first two parts of th
We study the action of (big) mapping class groups on the first homology of the corresponding surface. We give a precise characterization of the image of the induced homology representation.
In this paper, we prove a combination theorem for indicable subgroups of infinite-type (or big) mapping class groups. Importantly, all subgroups from the combination theorem, as well as those from the other results of the paper, can be constructed so