ﻻ يوجد ملخص باللغة العربية
In a recent paper by L. A. Bokut, V. V. Chaynikov and K. P. Shum in 2007, Braid group $B_n$ is represented by Artin-Buraus relations. For such a representation, it is told that all other compositions can be checked in the same way. In this note, we support this claim and check all compositions.
In this paper we will present the results of Artin--Markov on braid groups by using the Groebner--Shirshov basis. As a consequence we can reobtain the normal form of Artin--Markov--Ivanovsky as an easy corollary.
In this note, we adapt the procedure of the Long-Moody procedure to construct linear representations of welded braid groups. We exhibit the natural setting in this context and compute the first examples of representations we obtain thanks to this met
The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible s
Let $n, k geq 3$. In this paper, we analyse the quotient group $B_n/Gamma_k(P_n)$ of the Artin braid group $B_n$ by the subgroup $Gamma_k(P_n)$ belonging to the lower central series of the Artin pure braid group $P_n$. We prove that it is an almost-c
In this paper, we give a Groebner-Shirshov basis of the braid group $B_{n+1}$ in the Artin--Garside generators. As results, we obtain a new algorithm for getting the Garside normal form, and a new proof that the braid semigroup $B^+{n+1}$ is the subsemigroup in $B_{n+1}$.