ترغب بنشر مسار تعليمي؟ اضغط هنا

Flow-correlated dilution of a regular network leads to a percolating network during tumor induced angiogenesis

238   0   0.0 ( 0 )
 نشر من قبل Raja Paul
 تاريخ النشر 2009
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Raja Paul




اسأل ChatGPT حول البحث

We study a simplified stochastic model for the vascularization of a growing tumor, incorporating the formation of new blood vessels at the tumor periphery as well as their regression in the tumor center. The resulting morphology of the tumor vasculature differs drastically from the original one. We demonstrate that the probabilistic vessel collapse has to be correlated with the blood shear force in order to yield percolating network structures. The resulting tumor vasculature displays fractal properties. Fractal dimension, microvascular density (MVD), blood flow and shear force has been computed for a wide range of parameters.



قيم البحث

اقرأ أيضاً

We propose a strange-attractor model of tumor growth and metastasis. It is a 4-dimensional spatio-temporal cancer model with strong nonlinear couplings. Even the same type of tumor is different in every patient both in size and appearance, as well as in temporal behavior. This is clearly a characteristic of dynamical systems sensitive to initial conditions. The new chaotic model of tumor growth and decay is biologically motivated. It has been developed as a live Mathematica demonstration, see Wolfram Demonstrator site: http://demonstrations.wolfram.com/ChaoticAttractorInTumorGrowth/ Key words: Reaction-diffusion tumor growth model, chaotic attractor, sensitive dependence on initial tumor characteristics
98 - D.-S. Lee , H. Rieger , K. Bartha 2005
A theoretical model based on the molecular interactions between a growing tumor and a dynamically evolving blood vessel network describes the transformation of the regular vasculature in normal tissues into a highly inhomogeneous tumor specific capil lary network. The emerging morphology, characterized by the compartmentalization of the tumor into several regions differing in vessel density, diameter and necrosis, is in accordance with experimental data for human melanoma. Vessel collapse due to a combination of severely reduced blood flow and solid stress exerted by the tumor, leads to a correlated percolation process that is driven towards criticality by the mechanism of hydrodynamic vessel stabilization.
130 - Tijana T. Ivancevic 2008
Prediction and control of cancer invasion is a vital problem in medical science. This paper proposes a modern geometric Ricci-flow and entropy based model for control of avascular multicellular tumor spheroid growth and decay. As a tumor growth/decay control tool, a monoclonal antibody therapy is proposed. Keywords: avascular tumor growth and decay, multicellular tumor spheroid, Ricci flow and entropy, nonlinear heat equation, monoclonal antibody cancer therapy
125 - Xin Li , D. Thirumalai 2020
Heterogeneity is a hallmark of all cancers. Tumor heterogeneity is found at different levels -- interpatient, intrapatient, and intratumor heterogeneity. All of them pose challenges for clinical treatments. The latter two scenarios can also increase the risk of developing drug resistance. Although the existence of tumor heterogeneity has been known for two centuries, a clear understanding of its origin is still elusive, especially at the level of intratumor heterogeneity (ITH). The coexistence of different subpopulations within a single tumor has been shown to play crucial roles during all stages of carcinogenesis. Here, using concepts from evolutionary game theory and public goods game, often invoked in the context of the tragedy of commons, we explore how the interactions among subclone populations influence the establishment of ITH. By using an evolutionary model, which unifies several experimental results in distinct cancer types, we develop quantitative theoretical models for explaining data from {it in vitro} experiments involving pancreatic cancer as well as {it vivo} data in glioblastoma multiforme. Such physical and mathematical models complement experimental studies, and could optimistically also provide new ideas for the design of efficacious therapies for cancer patients.
90 - Giulia Fiscon 2020
The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we presented a new network-based algorithm for drug repositioning, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), which predicts drug-disease associations by quantifying the interplay between the drug targets and the disease-specific proteins in the human interactome via a novel network-based similarity measure that prioritizes associations between drugs and diseases locating in the same network neighborhoods. Specifically, we applied SAveRUNNER on a panel of 14 selected diseases with a consolidated knowledge about their disease-causing genes and that have been found to be related to COVID-19 for genetic similarity, comorbidity, or for their association to drugs tentatively repurposed to treat COVID-19. Focusing specifically on SARS subnetwork, we identified 282 repurposable drugs, including some the most rumored off-label drugs for COVID-19 treatments, as well as a new combination therapy of 5 drugs, actually used in clinical practice. Furthermore, to maximize the efficiency of putative downstream validation experiments, we prioritized 24 potential anti-SARS-CoV repurposable drugs based on their network-based similarity values. These top-ranked drugs include ACE-inhibitors, monoclonal antibodies, and thrombin inhibitors. Finally, our findings were in-silico validated by performing a gene set enrichment analysis, which confirmed that most of the network-predicted repurposable drugs may have a potential treatment effect against human coronavirus infections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا