ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of the LCD Model

452   0   0.0 ( 0 )
 نشر من قبل Li Tan
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, first-passage probability of Markov chains is used to get a strict proof of the existence of degree distribution of the LCD model presented by Bollobas (Random Structures and Algorithms 18(2001)). Also, a precise expression of degree distribution is presented.


قيم البحث

اقرأ أيضاً

In this paper, we give a new method for constructing LCD codes. We employ group rings and a well known map that sends group ring elements to a subring of the $n times n$ matrices to obtain LCD codes. Our construction method guarantees that our LCD co des are also group codes, namely, the codes are ideals in a group ring. We show that with a certain condition on the group ring element $v,$ one can construct non-trivial group LCD codes. Moreover, we also show that by adding more constraints on the group ring element $v,$ one can construct group LCD codes that are reversible. We present many examples of binary group LCD codes of which some are optimal and group reversible LCD codes with different parameters.
We investigate the stability condition of redundancy-$d$ multi-server systems. Each server has its own queue and implements popular scheduling disciplines such as First-Come-First-Serve (FCFS), Processor Sharing (PS), and Random Order of Service (ROS ). New jobs arrive according to a Poisson process and copies of each job are sent to $d$ servers chosen uniformly at random. The service times of jobs are assumed to be exponentially distributed. A job departs as soon as one of its copies finishes service. Under the assumption that all $d$ copies are i.i.d., we show that for PS and ROS (for FCFS it is already known) sending redundant copies does not reduce the stability region. Under the assumption that the $d$ copies are identical, we show that (i) ROS does not reduce the stability region, (ii) FCFS reduces the stability region, which can be characterized through an associated saturated system, and (iii) PS severely reduces the stability region, which coincides with the system where all copies have to be emph{fully} served. The proofs are based on careful characterizations of scaling limits of the underlying stochastic process. Through simulations we obtain interesting insights on the systems performance for non-exponential service time distributions and heterogeneous server speeds.
Possible reasons for the uniqueness of the positive geometric law in the context of stability of random extremes are explored here culminating in a conjecture characterizing the geometric law. Our reasoning comes closer in justifying the geometric la w in similar contexts discussed in Arnold et al. (1986) and Marshall & Olkin (1997) and also supplement their arguments.
While many questions in (robust) finance can be posed in the martingale optimal transport (MOT) framework, others require to consider also non-linear cost functionals. Following the terminology of Gozlan, Roberto, Samson and Tetali this corresponds t o weak martingale optimal transport (WMOT). In this article we establish stability of WMOT which is important since financial data can give only imprecise information on the underlying marginals. As application, we deduce the stability of the superreplication bound for VIX futures as well as the stability of stretched Brownian motion and we derive a monotonicity principle for WMOT.
71 - Lei Yu 2021
Let $mathbf{X}$ be a random variable uniformly distributed on the discrete cube $left{ -1,1right} ^{n}$, and let $T_{rho}$ be the noise operator acting on Boolean functions $f:left{ -1,1right} ^{n}toleft{ 0,1right} $, where $rhoin[0,1]$ is the noise parameter, representing the correlation coefficient between each coordination of $mathbf{X}$ and its noise-corrupted version. Given a convex function $Phi$ and the mean $mathbb{E}f(mathbf{X})=ain[0,1]$, which Boolean function $f$ maximizes the $Phi$-stability $mathbb{E}left[Phileft(T_{rho}f(mathbf{X})right)right]$ of $f$? Special cases of this problem include the (symmetric and asymmetric) $alpha$-stability problems and the Most Informative Boolean Function problem. In this paper, we provide several upper bounds for the maximal $Phi$-stability. Considering specific $Phi$s, we partially resolve Mossel and ODonnells conjecture on $alpha$-stability with $alpha>2$, Li and Medards conjecture on $alpha$-stability with $1<alpha<2$, and Courtade and Kumars conjecture on the Most Informative Boolean Function which corresponds to a conjecture on $alpha$-stability with $alpha=1$. Our proofs are based on discrete Fourier analysis, optimization theory, and improvements of the Friedgut--Kalai--Naor (FKN) theorem. Our improvements of the FKN Theorem are sharp or asymptotically sharp for certain cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا