ﻻ يوجد ملخص باللغة العربية
In this paper, we give a new method for constructing LCD codes. We employ group rings and a well known map that sends group ring elements to a subring of the $n times n$ matrices to obtain LCD codes. Our construction method guarantees that our LCD codes are also group codes, namely, the codes are ideals in a group ring. We show that with a certain condition on the group ring element $v,$ one can construct non-trivial group LCD codes. Moreover, we also show that by adding more constraints on the group ring element $v,$ one can construct group LCD codes that are reversible. We present many examples of binary group LCD codes of which some are optimal and group reversible LCD codes with different parameters.
Maximum distance separable (MDS) codes are optimal where the minimum distance cannot be improved for a given length and code size. Twisted Reed-Solomon codes over finite fields were introduced in 2017, which are generalization of Reed-Solomon codes.
In this paper, we show that LCD codes are not equivalent to linear codes over small finite fields. The enumeration of binary optimal LCD codes is obtained. We also get the exact value of LD$(n,2)$ over $mathbb{F}_3$ and $mathbb{F}_4$. We study the bound of LCD codes over $mathbb{F}_q$.
In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD
Let $mathbb{F}_q$ be a finite field of order $q$, a prime power integer such that $q=et+1$ where $tgeq 1,egeq 2$ are integers. In this paper, we study cyclic codes of length $n$ over a non-chain ring $R_{e,q}=mathbb{F}_q[u]/langle u^e-1rangle$. We de
We will discuss superimposed codes and non-adaptive group testing designs arising from the potentialities of compressed genotyping models in molecular biology. The given paper was motivated by the 30th anniversary of Dyachkov-Rykov recurrent upper bo