ترغب بنشر مسار تعليمي؟ اضغط هنا

On the stability of redundancy models

43   0   0.0 ( 0 )
 نشر من قبل Elene Anton
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the stability condition of redundancy-$d$ multi-server systems. Each server has its own queue and implements popular scheduling disciplines such as First-Come-First-Serve (FCFS), Processor Sharing (PS), and Random Order of Service (ROS). New jobs arrive according to a Poisson process and copies of each job are sent to $d$ servers chosen uniformly at random. The service times of jobs are assumed to be exponentially distributed. A job departs as soon as one of its copies finishes service. Under the assumption that all $d$ copies are i.i.d., we show that for PS and ROS (for FCFS it is already known) sending redundant copies does not reduce the stability region. Under the assumption that the $d$ copies are identical, we show that (i) ROS does not reduce the stability region, (ii) FCFS reduces the stability region, which can be characterized through an associated saturated system, and (iii) PS severely reduces the stability region, which coincides with the system where all copies have to be emph{fully} served. The proofs are based on careful characterizations of scaling limits of the underlying stochastic process. Through simulations we obtain interesting insights on the systems performance for non-exponential service time distributions and heterogeneous server speeds.


قيم البحث

اقرأ أيضاً

Possible reasons for the uniqueness of the positive geometric law in the context of stability of random extremes are explored here culminating in a conjecture characterizing the geometric law. Our reasoning comes closer in justifying the geometric la w in similar contexts discussed in Arnold et al. (1986) and Marshall & Olkin (1997) and also supplement their arguments.
Redundancy mechanisms consist in sending several copies of a same job to a subset of servers. It constitutes one of the most promising ways to exploit diversity in multiservers applications. However, its pros and cons are still not sufficiently under stood in the context of realistic models with generic statistical properties of service-times distributions and correlation structures of copies. We aim at giving a survey of recent results concerning the stability-arguably the first benchmark of performance-of systems with cancel-oncompletion redundancy. We also point out open questions and conjectures.
71 - Lei Yu 2021
Let $mathbf{X}$ be a random variable uniformly distributed on the discrete cube $left{ -1,1right} ^{n}$, and let $T_{rho}$ be the noise operator acting on Boolean functions $f:left{ -1,1right} ^{n}toleft{ 0,1right} $, where $rhoin[0,1]$ is the noise parameter, representing the correlation coefficient between each coordination of $mathbf{X}$ and its noise-corrupted version. Given a convex function $Phi$ and the mean $mathbb{E}f(mathbf{X})=ain[0,1]$, which Boolean function $f$ maximizes the $Phi$-stability $mathbb{E}left[Phileft(T_{rho}f(mathbf{X})right)right]$ of $f$? Special cases of this problem include the (symmetric and asymmetric) $alpha$-stability problems and the Most Informative Boolean Function problem. In this paper, we provide several upper bounds for the maximal $Phi$-stability. Considering specific $Phi$s, we partially resolve Mossel and ODonnells conjecture on $alpha$-stability with $alpha>2$, Li and Medards conjecture on $alpha$-stability with $1<alpha<2$, and Courtade and Kumars conjecture on the Most Informative Boolean Function which corresponds to a conjecture on $alpha$-stability with $alpha=1$. Our proofs are based on discrete Fourier analysis, optimization theory, and improvements of the Friedgut--Kalai--Naor (FKN) theorem. Our improvements of the FKN Theorem are sharp or asymptotically sharp for certain cases.
The existence of multiple non-equivalent minima of the scalar potential in SUSY models both raises technical challenges and introduces interesting physics. The technical challenges are now that one has to find several minima and evaluate which is the deepest, as well as calculate the tunneling time from a false vacuum to the true vacuum. We present here studies on the vacuum stability and color/charge breaking minima in the CMSSM and R parity violating minima in a B-L extended MSSM.
82 - Ning Ning , Jing Wu 2020
In this paper, to cope with the shortage of sufficient theoretical support resulted from the fast-growing quantitative financial modeling, we investigate two classes of generalized stochastic volatility models, establish their well-posedness of stron g solutions, and conduct the stability analysis with respect to small perturbations. In the first class, a multidimensional path-dependent process is driven by another multidimensional path-dependent process. The second class is a generalized one-dimensional stochastic volatility model with Holder continuous coefficients. What greatly differentiates those two classes of models is that both the process and its correlated driving process have their own subdifferential operators, whose one special case is the general reflection operators for multi-sided barriers. Hence, the models investigated fully cover various newly explored variants of stochastic volatility models whose well-posedness is unknown, and naturally serve as the rigorous mathematical foundation for new stochastic volatility model development in terms of multi-dimension, path-dependence, and multi-sided barrier reflection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا