ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotically tight bounds on subset sums

137   0   0.0 ( 0 )
 نشر من قبل Simon Griffiths
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Simon Griffiths




اسأل ChatGPT حول البحث

For a subset A of a finite abelian group G we define Sigma(A)={sum_{ain B}a:Bsubset A}. In the case that Sigma(A) has trivial stabiliser, one may deduce that the size of Sigma(A) is at least quadratic in |A|; the bound |Sigma(A)|>= |A|^{2}/64 has recently been obtained by De Vos, Goddyn, Mohar and Samal. We improve this bound to the asymptotically best possible result |Sigma(A)|>= (1/4-o(1))|A|^{2}. We also study a related problem in which A is any subset of Z_{n} with all elements of A coprime to n; it has recently been shown, by Vu, that if such a set A has the property Sigma(A) is not Z_{n} then |A|=O(sqrt{n}). This bound was improved to |A|<= 8sqrt{n} by De Vos, Goddyn, Mohar and Samal, we further improve the bound to the asymptotically best possible result |A|<= (2+o(1))sqrt{n}.



قيم البحث

اقرأ أيضاً

201 - Simon Griffiths 2010
A $k$-sum of a set $Asubseteq mathbb{Z}$ is an integer that may be expressed as a sum of $k$ distinct elements of $A$. How large can the ratio of the number of $(k+1)$-sums to the number of $k$-sums be? Writing $kwedge A$ for the set of $k$-sums of $ A$ we prove that [ frac{|(k+1)wedge A|}{|kwedge A|}, le , frac{|A|-k}{k+1} ] whenever $|A|ge (k^{2}+7k)/2$. The inequality is tight -- the above ratio being attained when $A$ is a geometric progression. This answers a question of Ruzsa.
We prove that the Hausdorff dimension of the set $mathbf{x}in [0,1)^d$, such that $$ left|sum_{n=1}^N expleft(2 pi ileft(x_1n+ldots+x_d n^dright)right) right|ge c N^{1/2} $$ holds for infinitely many natural numbers $N$, is at least $d-1/2d$ for $d g e 3$ and at least $3/2$ for $d=2$, where $c$ is a constant depending only on $d$. This improves the previous lower bound of the first and third authors for $dge 3$. We also obtain similar bounds for the Hausdorff dimension of the set of large sums with monomials $xn^d$.
Shifted convolution sums play a prominent role in analytic number theory. We investigate pointwise bounds, mean-square bounds, and average bounds for shifted convolution sums for Hecke eigenforms.
We obtain new estimates on the maximal operator applied to the Weyl sums. We also consider the quadratic case (that is, Gauss sums) in more details. In wide ranges of parameters our estimates are optimal and match lower bounds. Our approach is based on a combination of ideas of Baker (2021) and Chen and Shparlinski (2020).
We propose higher-order generalizations of Jacobsthals $p$-adic approximation for binomial coefficients. Our results imply explicit formulae for linear combinations of binomial coefficients $binom{ip}{p}$ ($i=1,2,dots$) that are divisible by arbitrarily large powers of prime $p$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا