ﻻ يوجد ملخص باللغة العربية
A $k$-sum of a set $Asubseteq mathbb{Z}$ is an integer that may be expressed as a sum of $k$ distinct elements of $A$. How large can the ratio of the number of $(k+1)$-sums to the number of $k$-sums be? Writing $kwedge A$ for the set of $k$-sums of $A$ we prove that [ frac{|(k+1)wedge A|}{|kwedge A|}, le , frac{|A|-k}{k+1} ] whenever $|A|ge (k^{2}+7k)/2$. The inequality is tight -- the above ratio being attained when $A$ is a geometric progression. This answers a question of Ruzsa.
We study M(n,k,r), the number of orbits of {(a_1,...,a_k)in Z_n^k | a_1+...+a_k = r (mod n)} under the action of S_k. Equivalently, M(n,k,r) sums the partition numbers of an arithmetic sequence: M(n,k,r) = sum_{t geq 0} p(n-1,k,r+nt), where p(a,b,t)
For a subset A of a finite abelian group G we define Sigma(A)={sum_{ain B}a:Bsubset A}. In the case that Sigma(A) has trivial stabiliser, one may deduce that the size of Sigma(A) is at least quadratic in |A|; the bound |Sigma(A)|>= |A|^{2}/64 has rec
In the past two decades, many researchers have studied {it index $2$} Gauss sums, where the group generated by the characteristic $p$ of the underling finite field is of index $2$ in the unit group of ${mathbb Z}/m{mathbb Z}$ for the order $m$ of the
The explicit formulas expressing harmonic sums via alternating Euler sums (colored multiple zeta values) are given, and some explicit evaluations are given as applications.
We propose higher-order generalizations of Jacobsthals $p$-adic approximation for binomial coefficients. Our results imply explicit formulae for linear combinations of binomial coefficients $binom{ip}{p}$ ($i=1,2,dots$) that are divisible by arbitrarily large powers of prime $p$.