ﻻ يوجد ملخص باللغة العربية
We prove that the Hausdorff dimension of the set $mathbf{x}in [0,1)^d$, such that $$ left|sum_{n=1}^N expleft(2 pi ileft(x_1n+ldots+x_d n^dright)right) right|ge c N^{1/2} $$ holds for infinitely many natural numbers $N$, is at least $d-1/2d$ for $d ge 3$ and at least $3/2$ for $d=2$, where $c$ is a constant depending only on $d$. This improves the previous lower bound of the first and third authors for $dge 3$. We also obtain similar bounds for the Hausdorff dimension of the set of large sums with monomials $xn^d$.
We prove that there exist positive constants $C$ and $c$ such that for any integer $d ge 2$ the set of ${mathbf x}in [0,1)^d$ satisfying $$ cN^{1/2}le left|sum^N_{n=1}expleft (2 pi i left (x_1n+ldots+x_d n^dright)right) right|le C N^{1/2}$$ for infin
We obtain new estimates on the maximal operator applied to the Weyl sums. We also consider the quadratic case (that is, Gauss sums) in more details. In wide ranges of parameters our estimates are optimal and match lower bounds. Our approach is based
For a subset A of a finite abelian group G we define Sigma(A)={sum_{ain B}a:Bsubset A}. In the case that Sigma(A) has trivial stabiliser, one may deduce that the size of Sigma(A) is at least quadratic in |A|; the bound |Sigma(A)|>= |A|^{2}/64 has rec
Shifted convolution sums play a prominent role in analytic number theory. We investigate pointwise bounds, mean-square bounds, and average bounds for shifted convolution sums for Hecke eigenforms.
We obtain the exact value of the Hausdorff dimension of the set of coefficients of Gauss sums which for a given $alpha in (1/2,1)$ achieve the order at least $N^{alpha}$ for infinitely many sum lengths $N$. For Weyl sums with polynomials of degree $d