ﻻ يوجد ملخص باللغة العربية
We examine the quantum theory of the spontaneous breaking of lattice rotation symmetry in d-wave superconductors on the square lattice. This is described by a field theory of an Ising nematic order parameter coupled to the gapless fermionic quasiparticles. We determine the structure of the renormalization group to all orders in a 1/N_f expansion, where N_f is the number of fermion spin components. Asymptotically exact results are obtained for the quantum critical theory in which, as in the large N_f theory, the nematic order has a large anomalous dimension, and the fermion spectral functions are highly anisotropic.
Recently, complex phase transitions accompanied by the rotational symmetry breaking have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various charge susceptibilities in an unbiased way, by
This paper consists of two important theoretical observations on the interplay between l = 2 condensates; d-density wave (ddw), electronic nematic and d-wave superconducting states. (1) There is SO(4) invariance at a transition between the nematic an
We show that, at weak to intermediate coupling, antiferromagnetic fluctuations enhance d-wave pairing correlations until, as one moves closer to half-filling, the antiferromagnetically-induced pseudogap begins to suppress the tendency to superconduct
We study a spin $S$ quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large $S$ and large $N$ methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature sy
In cuprate superconductors, superconductivity appears below the CDW transition temperature $T_{CDW}$. However, many-body electronic states under the CDW order are still far from understood. Here, we study the development of the spin fluctuations unde