ﻻ يوجد ملخص باللغة العربية
Recently, complex phase transitions accompanied by the rotational symmetry breaking have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various charge susceptibilities in an unbiased way, by applying the functional-renormalization-group method to the realistic $d$-$p$ Hubbard model. Without assuming the wavevector of the order parameter, we reveal that the most dominant instability is the uniform ($q = 0$) charge modulation on the $p_x$ and $p_y$ orbitals, which possesses the d-symmetry. This uniform nematic order triggers another nematic p-orbital density wave along the axial (Cu-Cu) direction at $Q_a = (pi/2,0)$. It is predicted that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic density-wave order at $q = Q_a$ is triggered by the uniform order. The predicted multistage nematic transitions are caused by the Aslamazov-Larkin-type fluctuation-exchange processes.
We examine the quantum theory of the spontaneous breaking of lattice rotation symmetry in d-wave superconductors on the square lattice. This is described by a field theory of an Ising nematic order parameter coupled to the gapless fermionic quasipart
We present a functional renormalization group analysis of superconductivity in the ground state of the attractive Hubbard model on a square lattice. Spontaneous symmetry breaking is treated in a purely fermionic setting via anomalous propagators and
During the last decade, translational and rotational symmetry-breaking phases -- density wave order and electronic nematicity -- have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprat
Charge order in cuprate superconductors is a possible source of anomalous electronic properties in the underdoped regime. Intra-unit cell charge ordering tendencies point to electronic nematic order involving oxygen orbitals. In this context we inves
Unconventional symmetry breaking without spin order,such as the rotational symmetry breaking (=nematic or smectic) orders as well as the spontaneous loop-current orders, have been recently reported in cuprate superconductors and their related materia