ﻻ يوجد ملخص باللغة العربية
In cuprate superconductors, superconductivity appears below the CDW transition temperature $T_{CDW}$. However, many-body electronic states under the CDW order are still far from understood. Here, we study the development of the spin fluctuations under the presence of $d$-wave bond order (BO) with wavevector $q=(pi/2,0),(0,pi/2)$, which is derived from the paramagnon interference mechanism in recent theoretical studies. Based on the $4 times 1$ and $4 times 4$ cluster Hubbard models, the feedback effects between spin susceptibility and self-energy are calculated self-consistently by using the fluctuation-exchange (FLEX) approximation. It is found that the $d$-wave BO leads to a sizable suppression of the nuclear magnetic relaxation rate $1/T_1$. In contrast, the reduction in $T_c$ is small, since the static susceptibility $chi^s(Q_s)$ is affected by the BO just slightly. It is verified that the $d$-wave BO scenario is consistent with the experimental electronic properties below $T_{CDW}$.
We show that, at weak to intermediate coupling, antiferromagnetic fluctuations enhance d-wave pairing correlations until, as one moves closer to half-filling, the antiferromagnetically-induced pseudogap begins to suppress the tendency to superconduct
We propose a mechanism of spin-triplet superconductivity at the edge of $d$-wave superconductors. Recent theoretical research in $d$-wave superconductors predicted that strong ferromagnetic (FM) fluctuations are induced by large density of states due
To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any $q$-de
Using a mix of numerical and analytic methods, we show that recent NMR $^{17}$O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa$_2$Cu$_3$O$_{6+x}$. We perform Bogoliubov-de Gennes
We reveal the full energy-momentum structure of the pseudogap of underdoped high-Tc cuprate superconductors. Our combined theoretical and experimental analysis explains the spectral-weight suppression observed in the B2g Raman response at finite ener