ﻻ يوجد ملخص باللغة العربية
We study the effect of the edge disorder on the conductance of the graphene nanoribbons (GNRs). We find that only very modest edge disorder is sufficient to induce the conduction energy gap in the otherwise metallic GNRs and to lift any difference in the conductance between nanoribbons of different edge geometry. We relate the formation of the conduction gap to the pronounced edge disorder induced Anderson-type localization which leads to the strongly enhanced density of states at the edges, formation of surface-like states and to blocking of conductive paths through the ribbons.
A theoretical study of the magnetoelectronic properties of zigzag and armchair bilayer graphene nanoribbons (BGNs) is presented. Using the recursive Greens function method, we study the band structure of BGNs in uniform perpendicular magnetic fields
We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNR). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DP),
We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapor-deposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons le
The search of new means of generating and controlling topological states of matter is at the front of many joint efforts, including bandgap engineering by doping and light-induced topological states. Most of our understading, however, is based on a s
We report on quantum transport measurements on etched graphene nanoribbons encapsulated in hexagonal boron nitride (hBN). At zero magnetic field our devices behave qualitatively very similar to what has been reported for graphene nanoribbons on $text