ترغب بنشر مسار تعليمي؟ اضغط هنا

The rule for a subdiffusive particle in an extremely diverse environment

52   0   0.0 ( 0 )
 نشر من قبل Ophir Flomenbom
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ophir Flomenbom




اسأل ChatGPT حول البحث

The dynamics of a subdiffusive continuous time random walker in an inhomogeneous environment is analyzed. In each microscopic jump, a random time is drawn from a waiting time probability density function (WT-PDF) that decays as a power law: phi(t;k)~k/(1+kt)^(1+beta), 0<beta<1. The parameter k, which is the diffusion coefficient for the jump, is a random quantity also; in each jump, it is drawn from a PDF, p(k)~1/k^gamma (0<gamma<1). We show that this system exhibits a transition in the scaling law of its effective WT-PDF, psi(t), which is obtained when averaging phi(t;k) with p(k). psi(t) decays as a power law, psi(t)~1/t^(1+mu), and mu is given by two different formula. When 1-gamma> beta;, mu=beta, but when 1-gamma<beta, mu=1-gamma. The transition in the scaling of psi(t) reflects the competition between two different mechanisms for subdiffusion: subdiffusion due to the heavily tailed phi(t;k) for microscopic jumps, and subdiffusion due to the collective effect of an environment made of many slow local regions. These two different mechanisms for subdiffusion are not additive, and compete each other. The reported transition is dimension independent, and disappears when the power beta is also distributed, in the range, 0<bate<1. Simulations exemplified the transition, and implications are discussed.

قيم البحث

اقرأ أيضاً

As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC) director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a s hort time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD) linear in time $tau$ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion) or faster (superdiffusion) than $tau$. These results are discussed in the context of coupling of colloidal particles dynamics to the director fluctuation dynamics.
Using a minimal algebraic model for the thermodynamics of binary rod--polymer mixtures, we provide evidence for a quintuple phase equilibrium; an observation that seems to be at odds with the Gibbs phase rule for two-component systems. Our model is b ased on equations of state for the relevant liquid crystal phases that are in quantitative agreement with computer simulations. We argue that the appearance of a quintuple equilibrium, involving an isotropic fluid, a nematic and smectic liquid crystal, and two solid phases can be reconciled with a generalized Gibbs phase rule in which the two intrinsic length scales of the athermal colloid--polymer mixture act as additional field variables.
Particles kicked by external forces to produce mobility distinct from thermal diffusion are an iconic feature of the active matter problem. Here, we map this onto a minimal model for experiment and theory covering the wide time and length scales of u sual active matter systems. A particle diffusing in a harmonic potential generated by an optical trap is kicked by programmed forces with time correlation at random intervals following the Poisson process. The models generic simplicity allows us to find conditions for which displacements are Gaussian (or not), how diffusion is perturbed (or not) by kicks, and quantifying heat dissipation to maintain the non-equilibrium steady state in an active bath. The model reproduces experimental results of tracer mobility in an active bath of swimming algal cells. It can be used as a stochastic dynamic simulator for Brownian objects in various active baths without mechanistic understanding, owing to the generic framework of the protocol.
Galaxy clusters form at the highest density nodes of the cosmic web. The clustering of massive halos is enhanced relative to the general mass distribution and matter beyond the virial region is strongly correlated to the halo mass (halo bias). Cluste ring can be further enhanced depending on halo properties other than mass (secondary bias). The questions of how much and why the regions surrounding rich clusters are over-dense are still unanswered. Here, we report the analysis of the environment bias in a sample of very massive clusters, selected through the Sunyaev-Zeldovich effect by the Planck mission. We present the first detection of the correlated dark matter associated to a single cluster, PSZ2 G099.86+58.45. The system is extremely rare in the current paradigm of structure formation. The gravitational lensing signal was traced up to 30 megaparsecs with high signal-to-noise ratio ~3.4. The measured shear is very large and points at environment matter density in notable excess of the cosmological mean. The boosting of the correlated dark matter density around high mass halos can be very effective. Together with ensemble studies of the large scale structure, lensing surveys can picture the surroundings of single haloes.
In this paper, we report a novel experimental and theoretical study to examine the response of a soft capsule bathed in a liquid environment to sudden external impacts. Taking an egg yolk as an example, we found that the soft matter is not sensitive to translational impacts, but is very sensitive to rotational, especially decelerating-rotational impacts, during which the centrifugal force and the shape of the membrane together play a critical role causing the deformation of the soft object. This finding, as the first study of its kind, reveals the fundamental physics behind the motion and deformation of a membrane-bound soft object, e.g., egg yolk, cells, soft brain matter, etc., in response to external impacts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا