ﻻ يوجد ملخص باللغة العربية
Particles kicked by external forces to produce mobility distinct from thermal diffusion are an iconic feature of the active matter problem. Here, we map this onto a minimal model for experiment and theory covering the wide time and length scales of usual active matter systems. A particle diffusing in a harmonic potential generated by an optical trap is kicked by programmed forces with time correlation at random intervals following the Poisson process. The models generic simplicity allows us to find conditions for which displacements are Gaussian (or not), how diffusion is perturbed (or not) by kicks, and quantifying heat dissipation to maintain the non-equilibrium steady state in an active bath. The model reproduces experimental results of tracer mobility in an active bath of swimming algal cells. It can be used as a stochastic dynamic simulator for Brownian objects in various active baths without mechanistic understanding, owing to the generic framework of the protocol.
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed mo
The active Brownian particle (ABP) model describes a swimmer, synthetic or living, whose direction of swimming is a Brownian motion. The swimming is due to a propulsion force, and the fluctuations are typically thermal in origin. We present a 2D mode
We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low density suspension of self-propelled nanoparticles in two dimensions. Specifically, we analyze how the curvature of the tracer affects its translational a
The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetri
We investigate the mean first passage time of an active Brownian particle in one dimension using numerical simulations. The activity in one dimension is modeled as a two state model; the particle moves with a constant propulsion strength but its orie