ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperbolic Weyl groups and the four normed division algebras

521   0   0.0 ( 0 )
 نشر من قبل Alex J. Feingold
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Weyl groups of hyperbolic Kac-Moody algebras of `over-extended type and ranks 3, 4, 6 and 10, which are intimately linked with the four normed division algebras K=R,C,H,O, respectively. A crucial role is played by integral lattices of the division algebras and associated discrete matrix groups. Our findings can be summarized by saying that the even subgroups, W^+, of the Kac-Moody Weyl groups, W, are isomorphic to generalized modular groups over K for the simply laced algebras, and to certain finite extensions thereof for the non-simply laced algebras. This hints at an extended theory of modular forms and functions.



قيم البحث

اقرأ أيضاً

114 - Weicai Wu 2020
It is shown that except in three cases conjugacy classes of classical Weyl groups $W(B_{n})$ and $W(D_{n})$ are of type ${rm D}$. This proves that Nichols algebras of irreducible Yetter-Drinfeld modules over the classical Weyl groups $mathbb W_{n}$ ( i.e. $H_{n}rtimes mathbb{S}_{n}$) are infinite dimensional, except the class of type $(2, 3),(1^{2}, 3)$ in $mathbb S_{5}$, and $(1^{n-2}, 2)$ in $mathbb S_{n}$ for $n >5$.
We use the theory of Clifford algebras and Vahlen groups to study Weyl groups of hyperbolic Kac-Moody algebras T_n^{++}, obtained by a process of double extension from a Cartan matrix of finite type T_n, whose corresponding generalized Cartan matrices are symmetric.
130 - Marc Culler 2020
We give new information about the geometry of closed, orientable hyperbolic 3-manifolds with 4-free fundamental group. As an application we show that such a manifold has volume greater than 3.44. This is in turn used to show that if M is a closed ori entable hyperbolic 3-manifold such that vol M < 3.44, then H_1(M;Z/2Z) has dimension at most 7.
The classical Peter-Weyl theorem describes the structure of the space of functions on a semi-simple algebraic group. On the level of characters (in type A) this boils down to the Cauchy identity for the products of Schur polynomials. We formulate and prove the analogue of the Peter-Weyl theorem for the current groups. In particular, in type A the corresponding characters identity is governed by the Cauchy identity for the products of q-Whittaker functions. We also formulate and prove a version of the Schur-Weyl theorem for current groups. The link between the Peter-Weyl and Schur-Weyl theorems is provided by the (current version of) Howe duality.
We give a complete study of the Clifford-Weyl algebra ${mathcal C}(n,2k)$ from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that ${mathcal C}(n,2k)$ is rigid when $n$ is even or when $k eq 1$. We find all non-trivial deformations of ${mathcal C}(2n+1,2)$ and study their representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا