ترغب بنشر مسار تعليمي؟ اضغط هنا

Hochschild Cohomology and Deformations of Clifford-Weyl Algebras

155   0   0.0 ( 0 )
 نشر من قبل Rosane Ushirobira
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a complete study of the Clifford-Weyl algebra ${mathcal C}(n,2k)$ from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that ${mathcal C}(n,2k)$ is rigid when $n$ is even or when $k eq 1$. We find all non-trivial deformations of ${mathcal C}(2n+1,2)$ and study their representations.



قيم البحث

اقرأ أيضاً

Coisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper we study the theory of (formal) deformation of coisotropic algebra s showing that deformations are governed by suitable coisotropic DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.
191 - Adam A. Allan 2011
The Hochschild cohomology ring of a group algebra is an object that has received recent attention, but is difficult to compute, in even the simplest of cases. In this paper, we use the product formula due to Witherspoon and Siegel to extend some of t heir computations. In particular, we compute the Hochschild cohomology algebra of group algebras kG where |G| is less than 16, and we provide an alternative computation of the ring $HH^*(k(E ltimes P))$ considered by Kessar and Linckelmann.
We compute the Hochschild cohomology groups $HH^*(A)$ in case $A$ is a triangular string algebra, and show that its ring structure is trivial.
We prove $L_{infty}$-formality for the higher cyclic Hochschild complex $chH$ over free associative algebra or path algebra of a quiver. The $chH$ complex is introduced as an appropriate tool for the definition of pre-Calabi-Yau structure. We show th at cohomologies of this complex are pure in case of free algebras (path algebras), concentrated in degree zero. It serves as a main ingredient for the formality proof. For any smooth algebra we choose a small qiso subcomplex in the higher cyclic Hochschild complex, which gives rise to a calculus of highly noncommutative monomials, we call them $xidelta$-monomials. The Lie structure on this subcomplex is combinatorially described in terms of $xidelta$-monomials. This subcomplex and a basis of $xidelta$-monomials in combination with arguments from Groebner bases theory serves for the cohomology calculations of the higher cyclic Hochschild complex. The language of $xidelta$-monomials in particular allows an interpretation of pre-Calabi-Yau structure as a noncommutative Poisson structure.
Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hoc hschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computations from our paper with Shroff for diagonal actions. By combining our work with recent results of Levandovskyy and Shepler, we produce examples of quantum Drinfeld Hecke algebras. These algebras generalize the braided Cherednik algebras of Bazlov and Berenstein.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا