ﻻ يوجد ملخص باللغة العربية
The generic unparticle propagator may be modified in two ways. Breaking the conformal symmetry effectively adds a mass term to the propagator, while considering vacuum polarization corrections adds a width-like term. Both of these modifications result naturally from the coupling of the unparticle to standard model (SM) fields. We explore how these modifications to the propagator affect the calculation of the lepton anomalous magnetic moment using an integral approximation of the propagator that is accurate for $dlesssim1.5$, where $d$ is the unparticle dimension. We find that for this range of $d$ and various values of the conformal breaking scale $mu$, the value of $g-2$ calculated when allowing various SM fermions to run in the unparticle self-energy loops does not significantly deviate from the value of $g-2$ when the width term is ignored. We also investigate the limits on a characteristic mass scale for the unparticle sector as a function of $mu$ and $d$.
This article reports an automated approach to the evaluation of higher-order terms of QED perturbation to anomalous magnetic moments of charged leptons by numerical means. We apply this approach to tenth-order correction due to a particular subcollec
We reanalyze the two-loop electroweak hadronic contributions to the muon g-2 that may be enhanced by large logarithms. The present evaluation is improved over those already existing in the literature by the implementation of the current algebra Ward
Among 12672 Feynman diagrams contributing to the electron anomalous magnetic moment at the tenth order, 6354 are the diagrams having no lepton loops, i.e., those of quenched type. Because the renormalization structure of these diagrams is very compli
The current $3.7sigma$ discrepancy between the Standard Model prediction and the experimental value of the muon anomalous magnetic moment could be a hint for the existence of new physics. The hadronic light-by-light contribution is one of the pieces
The ratios among the leading-order (LO) hadronic vacuum polarization (HVP) contributions to the anomalous magnetic moments of electron, muon and tau-lepton, $a_{ell=e,mu tau}^{HVP,LO}$, are computed using lattice QCD+QED simulations. The results incl