ترغب بنشر مسار تعليمي؟ اضغط هنا

Behavior near the extinction time in self-similar fragmentations I: the stable case

23   0   0.0 ( 0 )
 نشر من قبل Benedicte Haas
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The stable fragmentation with index of self-similarity $alpha in [-1/2,0)$ is derived by looking at the masses of the subtrees formed by discarding the parts of a $(1 + alpha)^{-1}$--stable continuum random tree below height $t$, for $t geq 0$. We give a detailed limiting description of the distribution of such a fragmentation, $(F(t), t geq 0)$, as it approaches its time of extinction, $zeta$. In particular, we show that $t^{1/alpha}F((zeta - t)^+)$ converges in distribution as $t to 0$ to a non-trivial limit. In order to prove this, we go further and describe the limiting behavior of (a) an excursion of the stable height process (conditioned to have length 1) as it approaches its maximum; (b) the collection of open intervals where the excursion is above a certain level and (c) the ranked sequence of lengths of these intervals. Our principal tool is excursion theory. We also consider the last fragment to disappear and show that, with the same time and space scalings, it has a limiting distribution given in terms of a certain size-biased version of the law of $zeta$.

قيم البحث

اقرأ أيضاً

We consider weighted random balls in $real^d$ distributed according to a random Poisson measure with heavy-tailed intensity and study the asymptotic behaviour of the total weight of some configurations in $real^d$. This procedure amounts to be very r ich and several regimes appear in the limit, depending on the intensity of the balls, the zooming factor, the tail parameters of the radii and of the weights. Statistical properties of the limit fields are also evidenced, such as isotropy, self-similarity or dependence. One regime is of particular interest and yields $alpha$-stable stationary isotropic self-similar generalized random fields which recovers Takenaka fields, Telecom process or fractional Brownian motion.
59 - W.P. Yan 2018
In this paper, we consider the explicit wave-breaking mechanism and its dynamical behavior near this singularity for the generalized b-equation. This generalized b-equation arises from the shallow water theory, which includes the Camassa-Holm equatio n, the Degasperis-Procesi equation, the Fornberg-Whitham equation, the Korteweg-de Vires equation and the classical b-equation. More precisely, we find that there exists an explicit self-similar blowup solution for the generalized b-equation. Meanwhile, this self-similar blowup solution is asymptotic stability in a parameters domain, but instability in other parameters domain.
120 - Eric Foxall 2018
The logistic birth and death process is perhaps the simplest stochastic population model that has both density-dependent reproduction, and a phase transition, and a lot can be learned about the process by studying its extinction time, $tau_n$, as a f unction of system size $n$. A number of existing results describe the scaling of $tau_n$ as $ntoinfty$, for various choices of reproductive rate $r_n$ and initial population $X_n(0)$ as a function of $n$. We collect and complete this picture, obtaining a complete classification of all sequences $(r_n)$ and $(X_n(0))$ for which there exist rescaling parameters $(s_n)$ and $(t_n)$ such that $(tau_n-t_n)/s_n$ converges in distribution as $ntoinfty$, and identifying the limits in each case.
We consider the extinction time of the contact process on increasing sequences of finite graphs obtained from a variety of random graph models. Under the assumption that the infection rate is above the critical value for the process on the integer li ne, in each case we prove that the logarithm of the extinction time divided by the size of the graph converges in probability to a (model-dependent) positive constant. The graphs we treat include various percolation models on increasing boxes of Z d or R d in their supercritical or percolative regimes (Bernoulli bond and site percolation, the occupied and vacant sets of random interlacements, excursion sets of the Gaussian free field, random geometric graphs) as well as supercritical Galton-Watson trees grown up to finite generations.
We consider the heat flow of corotational harmonic maps from $mathbb R^3$ to the three-sphere and prove the nonlinear asymptotic stability of a particular self-similar shrinker that is not known in closed form. Our method provides a novel, systematic , robust, and constructive approach to the stability analysis of self-similar blowup in parabolic evolution equations. In particular, we completely avoid using delicate Lyapunov functionals, monotonicity formulas, indirect arguments, or fragile parabolic structure like the maximum principle. As a matter of fact, our approach reduces the nonlinear stability analysis of self-similar shrinkers to the spectral analysis of the associated self-adjoint linearized operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا