ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong couplings for static locally tree-like random graphs

67   0   0.0 ( 0 )
 نشر من قبل Mariana Olvera-Cravioto
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this paper is to provide a general purpose result for the coupling of exploration processes of random graphs, both undirected and directed, with their local weak limits when this limit is a marked Galton-Watson process. This class includes in particular the configuration model and the family of inhomogeneous random graphs with rank-1 kernel. Vertices in the graph are allowed to have attributes on a general separable metric space and can potentially influence the construction of the graph itself. The coupling holds for any fixed depth of a breadth-first exploration process.



قيم البحث

اقرأ أيضاً

We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the cavity prediction for the limiting free energy per spin is correct for any positive temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) equations. Both results are achieved by proving the local convergence of the Boltzmann distribution on the original graph to the Boltzmann distribution on the appropriate infinite random tree.
For each $n ge 1$, let $mathrm{d}^n=(d^{n}(i),1 le i le n)$ be a sequence of positive integers with even sum $sum_{i=1}^n d^n(i) ge 2n$. Let $(G_n,T_n,Gamma_n)$ be uniformly distributed over the set of simple graphs $G_n$ with degree sequence $mathrm {d}^n$, endowed with a spanning tree $T_n$ and rooted along an oriented edge $Gamma_n$ of $G_n$ which is not an edge of $T_n$. Under a finite variance assumption on degrees in $G_n$, we show that, after rescaling, $T_n$ converges in distribution to the Brownian continuum random tree as $n to infty$. Our main tool is a new version of Pitmans additive coalescent (https://doi.org/10.1006/jcta.1998.2919), which can be used to build both random trees with a fixed degree sequence, and random tree-weighted graphs with a fixed degree sequence. As an input to the proof, we also derive a Poisson approximation theorem for the number of loops and multiple edges in the superposition of a fixed graph and a random graph with a given degree sequence sampled according to the configuration model; we find this to be of independent interest.
Consider a statistical physical model on the $d$-regular infinite tree $T_{d}$ described by a set of interactions $Phi$. Let ${G_{n}}$ be a sequence of finite graphs with vertex sets $V_n$ that locally converge to $T_{d}$. From $Phi$ one can construc t a sequence of corresponding models on the graphs $G_n$. Let ${mu_n}$ be the resulting Gibbs measures. Here we assume that ${mu_{n}}$ converges to some limiting Gibbs measure $mu$ on $T_{d}$ in the local weak$^*$ sense, and study the consequences of this convergence for the specific entropies $|V_n|^{-1}H(mu_n)$. We show that the limit supremum of $|V_n|^{-1}H(mu_n)$ is bounded above by the emph{percolative entropy} $H_{perc}(mu)$, a function of $mu$ itself, and that $|V_n|^{-1}H(mu_n)$ actually converges to $H_{perc}(mu)$ in case $Phi$ exhibits strong spatial mixing on $T_d$. We discuss a few examples of well-known models for which the latter result holds in the high temperature regime.
The reproduction speed of a continuous-time branching random walk is proportional to a positive parameter $lambda$. There is a threshold for $lambda$, which is called $lambda_w$, that separates almost sure global extinction from global survival. Anal ogously, there exists another threshold $lambda_s$ below which any site is visited almost surely a finite number of times (i.e.~local extinction) while above it there is a positive probability of visiting every site infinitely many times. The local critical parameter $lambda_s$ is completely understood and can be computed as a function of the reproduction rates. On the other hand, only for some classes of branching random walks it is known that the global critical parameter $lambda_w$ is the inverse of a certain function of the reproduction rates, which we denote by $K_w$. We provide here new sufficient conditions which guarantee that the global critical parameter equals $1/K_w$. This result extends previously known results for branching random walks on multigraphs and general branching random walks. We show that these sufficient conditions are satisfied by periodic tree-like branching random walks. We also discuss the critical parameter and the critical behaviour of continuous-time branching processes in varying environment. So far, only examples where $lambda_w=1/K_w$ were known; here we provide an example where $lambda_w>1/K_w$.
We study the Bethe approximation for a system of long rigid rods of fixed length k, with only excluded volume interaction. For large enough k, this system undergoes an isotropic-nematic phase transition as a function of density of the rods. The Bethe lattice, which is conventionally used to derive the self-consistent equations in the Bethe approximation, is not suitable for studying the hard-rods system, as it does not allow a dense packing of rods. We define a new lattice, called the random locally tree-like layered lattice, which allows a dense packing of rods, and for which the approximation is exact. We find that for a 4-coordinated lattice, k-mers with k>=4 undergo a continuous phase transition. For even coordination number q>=6, the transition exists only for k >= k_{min}(q), and is first order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا