ﻻ يوجد ملخص باللغة العربية
In this letter we propose a model that demonstrates the effect of free surface on the lattice resistance experienced by a moving dislocation in nanodimensional systems. This effect manifests in an enhanced velocity of dislocation due to the proximity of the dislocation line to the surface. To verify this finding, molecular dynamics simulations for an edge dislocation in bcc molybdenum are performed and the results are found to be in agreement with the numerical implementations of this model. The reduction in this effect at higher stresses and temperatures, as revealed by the simulations, confirms the role of lattice resistance behind the observed change in the dislocation velocity.
This paper has been withdrawn.
Atomistic computations of the Peierls stress in fcc metals are relatively scarce. By way of contrast, there are many more atomistic computations for bcc metals, as well as mixed discrete-continuum computations of the Peierls-Nabarro type for fcc meta
Plastic deformation of crystals is a physical phenomenon, which has immensely driven the development of human civilisation since the onset of the Chalcolithic period. This process is primarily governed by the motion of line defects, called dislocatio
Modern polarization theory yields surface bound charge associated with spontaneous polarization of bulk. However, understanding polarization in nano systems also requires a proper treatment of charge transfer between surface dangling bonds. Here, we
We study the dynamic response of a superfluid field to a moving edge dislocation line to which the field is minimally coupled. We use a dissipative Gross-Pitaevskii equation, and determine the initial conditions by solving the equilibrium version of